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Group Cohomology
G-modules

Let G be a group, written multiplicatively and A be an abelian group, written addi-
tively. We say that G acts on A if there is a group homomorphism

ρ : G −→ Aut(A)

Definition 1. An abelian group A is said to be a G-module if G acts on A.
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But, then how it is a module and what is even the base ring here? Well, to answer
that, consider the set Z[G] of formal sums of the form∑

g∈G

ngg ng ∈ Z

The sum and product on the set Z[G] is defined as follows∑
g∈G

ngg +
∑
g∈G

mgg =
∑
g∈G

(ng +mg)g∑
g∈G

ngg

 ·
∑

g∈G

mgg

 =
∑
g∈G
h∈G

ngmh(gh)

Thus the ring structure in Z[G] is clear. We define the left-multiplication with ele-
ments from A by elements from Z[G] as follows∑

g∈G

ngg

 a =
∑
g∈G

ng(ga)

ga is the action of g on a. Since A is an abelian group,
∑

g∈G ng(ga) ∈ A. This
makes A into a Z[G]-module.

Definition 2 (G-module homomorphism). Let M,N be G-modules. A G-module
homomorphism is a group homomorphism ϕ : M −→ N such that ϕ(gm) = gϕ(m)
for all m ∈M .

here gm denotes the action of g on m and gϕ(m) denotes the action of g on ϕ(m).
For a G-module A, let AG be the abelian group of G-invariant points, i.e.

AG := {a ∈ A : ga = a ∀ g ∈ G}

It can be easily verified that if f : A −→ B is a G-module homomorphism then, then
f restricted to AG maps to BG and hence we get a group homomorphism f : AG −→
BG. The assignment A 7→ AG defines a functor from the category of G-modules to
the category of abelian groups. This functor is left exact but not right exact, i.e. for
any shot exact sequence of G-modules

0 −→ A −→ A′ −→ A′′ −→ 0

Then the following sequence is also exact

0 −→ AG −→ (A′)G −→ (A′′)G
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But, not necessarily the map (A′)G −→ (A′′)G is not necessarily surjective. An
example is as follows, consider the short exact sequence

0 −→ Z/pZ −→ Z/p2Z −→ Z/pZ −→ 0

of Z/pZ-modules, where Z/pZ acts on the middle factor by the rule g(a) = a(1+pg).
Then the map (Z/p2Z)Z/pZ −→ (Z/pZ)Z/pZ is the 0 map but (Z/pZ)Z/pZ is non-
trivial. Therefore this functor is not right exact.

Injective G-modules

Definition 3 (Injective G-module). A G-module M is said to be injective if for
every inclusion A ⊂ B of G-modules and G-module homomorphism ϕ : A −→ M ,
there exists a G-module homomorphism ψ : B −→M such that ψ|A = ϕ.

We prove the key theorem here.

Theorem 1. Every G-module A can be embedded into an injective G-module.

Proof. We will need the following two lemmas:

Lemma 1. Let G be the trivial group. Then every abelian group is a G-module. An
abelian group A is injective if and only if A is divisible, i.e. the map x 7→ nx is
surjective for all n ∈ N.

Proof. Let A be injective. Let, if possible, A be not divisible. Then, there exists n > 1
and y ∈ A such that nx 6= y for any x ∈ A. Consider the map Z −→ A given by
m 7→ my. Then this is a G-module homomorphism as it is a group homomorphism.
But since y 6= nx for all x ∈ A, the map (m 7→ my) can’t be extended to 1

nZ, but
Z ⊂ 1

nZ is an inclusion of abelian groups. A contradiction!

Conversely suppose, A is divisible, i.e. the map x 7→ nx is surjective for all n ∈
N. Let M ⊂ N be an inclusion of abelian groups and ϕ : M −→ A be a group
homomorphism. Then consider the set S of pairs (M ′, ϕ′) where M ⊂ M ′ ⊂ N and
ϕ′ : M ′ −→ A a group homomorphism such that ϕ|A = ϕ. This set is nonempty
since (M,ϕ) ∈ S. We define a partial order on S, as follows, we say that

(M1, ϕ1) ≤ (M2, ϕ2)

if M1 ⊂ M2 and ϕ2|M1
= ϕ1. For any chain in S of the form (Mi, ϕi)i∈I for some

indexing set I. We get a map ϕ :
⋃
i∈IMi −→ A given by a(∈ Mi) 7→ ϕ1(a). Then

we get that
(⋃

i∈IMi,ϕ
)
is an upper bound for the chain (Mi, ϕi)i∈I . The Zorn’s

lemma applies and we get a maximal element (M, ψ). We claim that M = N .
Suppose the contrary. Then choose h ∈ N \M and consider the subgroup 〈h〉 of N .
If M∩ 〈h〉 = ∅ then the sum M⊕ 〈h〉 is a larger subgroup of N than M and we
can extend ψ toM⊕ 〈h〉 by defining ψ at h arbitrarily and extending by linearity.
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Now, letM∩〈h〉 6= ∅. Take nh ∈M∩〈h〉 so that n is minimal. Then ψ(nh) makes
sense as nh ∈ M. Since A is divisible, there exists g ∈ A so that ng = ψ(nh). By
defining ψ(h) := g, we get an extension of ψ toM⊕ 〈h〉. This is a contradiction to
the maximality of (M, ψ). Therefore N =M.

Lemma 2. Every abelian group A can be embedded inside an injective abelian group.

Proof. Consider the abelian group Q/Z. This is clearly divisible and hence injective
by lemma 1. Consider the abelian group A. Let a ∈ A be a nonzero element. Consider
the subgroup 〈a〉 ⊂ A. Then define a map ϕa : 〈a〉 −→ Q/Z by the following rule

ϕa(a) =

{
1 when a has infinite order
1
n when order of a is n ∈ N

Since Q/Z is injective, there exists ψa : A −→ Q/Z which extends ϕa. By the uni-
versal property of product in a category, this collection {ψa}a∈A\{0} defines a unique
map

ψ : A −→
∏

a∈A\{0}

Q/Z

By definition ψa(a) = 0 if and only if a = 0. Thus ψ is an injective map. Thus we
get an embedding of A into

∏
a∈A\{0}Q/Z, which is an injective and hence divisible

group.

By lemma 5 and lemma 6 we get that the abelian group A can be embedded into a di-
visible group B. Using that we can embed A into HomZ(Z[G], B) and HomZ(Z[G], B)
is an injective G-module.

Following theorem 1, we embed A into an injective G-module I0, then embed I0/A
to a G-module I1 and continue the process. We get a long exact sequence

0 −→ A −→ I0
d0−→ I1

d1−→ I2 −→ · · ·

Definition 4 (Injective resolution). The exact sequence obtained above is called
an injective resolution of A.

Starting with an injective resolution of A and then taking the G-invariant functor,
we get a cochain complex

0 −→ (I0)G
d0−→ (I1)G

d1−→ (I2)G
d2−→ · · ·
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i.e., d(i+1) ◦ di = 0 or, in other words, im(di) ⊆ ker(d(i+1)). By definition, d−1 is the
0-map 0 −→ (I0)G. Then, we define the ith cohomology group as follows

H i(G,A) :=
ker(di)

im(d(i−1))
∀ i ≥ 0

By definition, we can see that H0(G,A) = AG = {a ∈ A : ga = a ∀ g ∈ G}. Let
M,N be two G-modules and let HomG(M,N) be the group of all G-module maps
f : M −→ N . Let ϕ ∈ HomG(M,N). Take two injective resolutions

0 −→M −→ I0
d0−→ I1

d1−→ I2 −→ · · ·

0 −→ N −→ J0 d0−→ J1 d1−→ J2 −→ · · ·

Note the abuse of notations: we have used di for both the injective resolutions even
though they are not the same!

Then, by theorem 1, we get the following commutative diagram

0 M I0 I1 I2 · · ·

0 N J0 J1 J2 · · ·

ϕ

d0

ϕ0

d1

ϕ1 ϕ2

d2

d0 d1 d2

Figure 1

Now, taking the G-invariant functor, the vertical arrows in figure 8 induce maps

H i(ϕ) : H i(G,M) −→ H i(G,N)

between cohomology groups.

Right derived functors

The following is a pretty straightforward observation

Proposition 1. For a fixed choice of injective resolutions for M and N , the maps
on cohomology groups, i.e., H i(ϕ) : H i(G,M) −→ H i(G,N) do not depend on the
choice of the maps ϕi’s.

Proof. It’s enough to prove that if ϕ = 0, then H i(ϕ) = 0 for all i regardless of the
choice of ϕi’s. We construct maps gi : I(i+1) −→ J i, with the convention that g−1 is
the 0-map, such that ϕi = gi ◦di +d(i−1) ◦ gi−1. We construct it inductively given the
existence of ϕi−1, gi−1 and the injectivity of Ji’s. Suppose that we have constructed
gi−1. We now have the following diagram:
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I(i−1) I i I(i+1)

J (i−1) J i J (i+1)

d(i−1)

ϕi−1 ϕi

gi−1

di

ϕi+1

d(i−1) di

Figure 2

In ϕi = gi ◦ di + d(i−1) ◦ gi−1, di is the map I i −→ I(i+1) and d(i−1) is the map
J (i−1) −→ J i. We have the inclusion of G-modules im(di) ⊆ I(i+1). We define the
map g̃i : im(di) −→ J i as follows: Let a ∈ im(di) Then there exists b ∈ I i such that
a = di(b). Then

g̃i(a) := ϕi(b)− d(i−1)(gi−1(b))

We claim that this map is well defined. Let b1, b2 ∈ I i such that di(b1) = a = di(b2).
Since d(b1 − b2) = 0, b1 − b2 ∈ ker(di) = im(d(i−1)). There exists b◦ ∈ I(i−1), such
that d(i−1)(b◦) = b1 − b2. Then we must prove

ϕi(b1)− di−1(g(i−1)(b1)) = ϕi(b2)− d(i−1)(g(i−1)(b2))
⇐⇒ ϕi(b1 − b2) = d(i−1)(gi−1(b1 − b2))
⇐⇒ ϕi(d

(i−1)(b◦)) = d(i−1)(gi−1(d
(i−1)(b◦))) (†)

Hence it’s equivalent to show (†). By induction hypothesis, ϕi−1 = gi−1 ◦ d(i−1) +
d(i−2) ◦ gi−2. Then

ϕi−1(b◦) = gi−1 ◦ d(i−1)(b◦) + d(i−2) ◦ gi−2(b◦)
=⇒ d(i−1)(ϕi−1(b◦)) = d(i−1)(gi−1 ◦ d(i−1)(b◦) + d(i−2) ◦ gi−2(b◦))

= d(i−1)(gi−1(d
(i−1)(b◦))) (‡)

(since d(i−1) ◦ d(i−2) = 0)

Since figure 1 is commutative, we get that

ϕi(d
(i−1)(b◦)) = d(i−1)(ϕi−1(b◦)) (♠)

Comparing (♠) and (‡) we get (†). The base case is g−1 = 0, thus we have constructed
a map g̃i : im(di) −→ J i. Since J i is an injective G-module and im(di) ⊆ I(i+1) is an
inclusion of G-modules, there exists gi : I(i+1) −→ J i such that gi|im(di) ≡ g̃i. This gi
is the desired map as we can easily verify the relation ϕi = gi ◦ di + d(i−1) ◦ gi−1. This
completes the induction step and hence the proof of existence of such collection of
maps {gi}i≥−1. From these maps we can conclude that H i(ϕ) are all 0-maps. Hence
H i(ϕ) is dependent only on ϕ. The following noncommutative diagram sums up the
construction
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0 M I0 I1 I2

0 N J0 J1 J2

ϕ

d0

ϕ0 ϕ1
g0

d1

ϕ2
g1

d2

d0 d1 d2

Figure 3

Definition 5 (Cochain homotopy). The maps gi, constructed above, are called
cochain homotopy.

Wemake a wonderful observation. LetM = N and ϕ : M −→ N be the identity map.
Then H i(ϕ) are the canonical induced maps H i(ϕ) : H i(G,M) −→ H i(G,N) =
H i(G,M). This shows thatH i(G,M) are unique up to isomorphism and independent
of the choice of injective resolution. Similarly, the maps H i(ϕ) are also independent
of the choice of injective resolution and the maps ϕi’s. Hence H i defines a functor
from the category G-Mod of G-modules to the category Ab of abelian groups.

Definition 6 (Right derived functors). The functors H i from G-Mod to Ab are
called the right derived functors of the G-invariant functor.

Proposition 2 (Short to Long Exact Sequence in Cohomolgy). Given any
short exact sequence

0 −→M −→M ′ −→M ′′ −→ 0

There is a corresponding long exact sequence

0 H0(G,M) · · · H i(G,M ′′) H i+1(G,M)

· · · H i+1(G,M ′′) H i+1(G,M ′)

δi

Figure 4

The maps δi are called the connecting homomorphism.

Proof. The proof is based on the following lemma, the so-called snake lemma

Lemma 3 (Snake lemma). For any commutative diagram with exact rows, as below,

0 M M ′ M ′′ 0

0 N N ′ N ′′ 0

f0 f1 f2

Figure 5
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there exists a canonical map δ : ker(f2) −→ coker(f0) forming the following long
exact sequence

0 −→ ker(f0) −→ ker(f1) −→ ker(f2)
δ−→ coker(f0) −→ coker(f1)coker(f2) −→ 0

Proof. We just sketch how to define the map δ. Let x ∈ ker(f2) ⊆M ′′. Exactness of
the upper row tells us the map M ′ −→M ′′ is surjective. Choose y ∈M ′ so that the
image of y in M ′′ is x. Then we push y to N ′ via f1. Again exactness tells us that
there is a preimage of f1(y) in N . Thus we get δ. The independence on the choice of
y can be proved likewise we did earlier using the exactness of commutativity of figure
12.

we can use the snake lemma to finish the proof.

Proposition 3. Let M be an injective G-module. Then H i(G,M) = 0 for all i ≥ 1.

Proof. Since M is injective itself, we can take I0 = M . Thus we get the following
injective resolution for M

0 −→M −→M −→ 0 −→ 0 −→ · · ·

Since H i(G,M) are independent of the choice of the injective resolution, we get that
H i(G,M) = 0 for all i ≥ 1.

Definition 7 (Acyclic module). Let M be a G-module. Then M is said to be
acyclic if H i(G,M) = 0 for all i ≥ 1.

Proposition 3 shows us that an injective module is acyclic. We note the existence of
a simple injective resolution in case of an injective module. It turns out that we can
replace injective resolution in the definition by an acyclic resolution for the purposes
of doing a computation. We state the following proposition in this regard

Proposition 4. Let

0 −→M −→M0 −→M1 −→M2 −→ · · ·

be an exact sequence of G-modules with each Mi acyclic. Consider the cochain com-
plex obtained by applying the G-invariant functor

0 −→ (M0)
G −→ (M1)

G −→ (M2)
G −→ · · ·

The cohomology groups of this cochain complex coincides with the cohomology groups
H i(G,M).
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Two important consequences of the long exact sequence

(•) Let

0 −→M −→M ′ −→M ′′ −→ 0

be an exact sequence of G-modules and H1(G,M) = 0, then

0 −→MG −→ (M ′)G −→ (M ′′)G −→ 0

is also an exact sequence.

(••) Let M ′ be acyclic in the short exact sequence above. Then the connecting
homomorphisms δi are isomorphisms

H i(G,M ′′)
δi∼= H i+1(G,M)

Cohomology of finite groups

Observe that if G is the one element group, then any G-module is acyclic. This
is because starting with any injective resolution of M , taking G-invariant does not
the affect the exactenss and hence the cohomology groups are all trivial. In fact,
G-modules are precisely the abelian groups. Thus every abelian group, thought as a
G-module for the trivial group G, is acyclic.

Let G be any group and H ≤ G be any subgroup. LetM be an H-module. Then it is
a natural question to ask if we can somehow upgradeM to get a G-module. We know
thatM is actually a Z[H]-module for the group ring Z[H]. Also, H being a subgroup,
Z[G] is also a Z[H]-module. Then we take the tensor product M ⊗Z[H]Z[G]. Clearly
this becomes a Z[G]-module over the group ring Z[G] and hence a G-module.

Definition 8 (Induction). Let M be an H-module for some subgroup H ≤ G of
a group G. We define the induction of M from H to G, denoted by IndGH(M), is
defined to be

IndGH(M) := M ⊗Z[H] Z[G]

We may also identify IndGH(M) with the set of maps φ : G −→M such that φ(gh) =
h · φ(g) for all h ∈ H and g ∈ G. The action of G on IndGH(M) is given by
g · φ(g′) = φ(gg′). Z[G] contains a copy of G inside it. Let [g] ∈ Z[G] be the
image of g ∈ G in Z[G]. The element m ⊗ [g] ∈ M ⊗Z[H] Z[G] corresponds to the
map ϕm,g : G −→M given by

ϕm,g(g
′) =

{
(gg′) ·m gg′ ∈ H
0 gg′ /∈ H

∀ g′ ∈ G
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Theorem 2 (Shapiro’s lemma). Let H be a subgroup of G and N is an H-module.
There is a canonical isomorphism

H i(G, IndGH(N)) −→ H i(H,N)

In particular, N is acyclic if and only if IndGH(N) is acyclic.

Proof. We only sketch the key points of the proof.

1. It is easy to check that

H0(G, IndGH(N)) = (IndGH(N))G = NH = H0(H,N)

2. The functor IndGH from H-Mod to G-Mod is both right and left exact, i.e.,
for every injective Z[H]-module map ϕ : A −→ B, the induced map

ϕ⊗Z[H] Z[G] : A⊗Z[H] Z[G] −→ B ⊗Z[H] Z[G]

given by a ⊗ [g] 7→ ϕ(a) ⊗ [g] is also injective. In face, Z[G] is a free Z[H]-
module.

3. If I is an injective H-module then IndGH(I) is an injective G-module. For
proving this we need the following lemma

Lemma 4. Let H be a subgroup of G, let M be a G-module, and let N be an
H-module. Then there are natural isomorphisms

HomG(M, IndGH(N)) ∼= HomH(M,N)

HomG(IndGH(N),M) ∼= HomH(N,M)

Proof. Wherever in the proof I put a ‘·’, I mean group action and only juxta-
position means product in either group or module. First we consider the case
M = N . Then the identity map M −→ N = M corresponds to the following
maps:

Φ : IndGH(M) −→M given by∑
g∈G

mg ⊗ [g] 7−→
∑
g∈G

g ·mg

Ψ : M −→ IndGH(M) given by

m 7−→
∑
i

(gi ·m)⊗ [g−1i ]
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where the sum is taken over a set distinct representatives gi of left cosets of H
in G, given that [G : H] <∞. The map Ψ doesn’t depend on the choice of gi’s
and hence

Ψ(g ·m) = Ψ

(∑
i

(ggi ·m)⊗ [(ggi)
−1]

)
[g] = Ψ(m)[g]

Therefore Ψ is clearly compatible with G-action.

Now, let N be any H-module. Let ϕ ∈ HomH(M,N). Then we get a map

ϕ⊗ Z[G] : IndGH(M) −→ IndGH(N)

given by m⊗ [g] 7→ ϕ(m)⊗ [g]. Therefore

(ϕ⊗ Z[G]) ◦Ψ : M −→ IndGH(N)

is the required map in HomG(M, IndGH(N)). This gives a map

HomH(M,N) −→ HomG(M, IndGH(N))

We have similar maps, as Φ and Ψ,

Φ̃ : IndGH(N) −→ N

Ψ̃ : N −→ IndGH(N)

Let ϕ̃ ∈ HomG(M, IndGH(N)). Then, for any m ∈M , ϕ̃(m) ∈ IndGH(N) can be
identified with a map φ : G −→ N . Now, compose with the map Φ̃ to get the
map which takes φ to φ(e) ∈ N . Thus we get a map

HomG(M, IndGH(N)) −→ HomH(M,N)

On the other hand, let ψ ∈ HomH(N,M). This induces the map

ψ ⊗ Z[G] : IndGH(N) −→ IndGH(M)

Then Φ ◦ (ψ ⊗ Z[G]) is the required map in HomG(IndGH(N),M). Hence we
get a map

HomH(N,M) −→ HomG(IndGH(N),M)

On the other hand, let ψ̃ ∈ HomG(IndGH(N),M). We have a map

Ψ̃ : N −→ IndGH(N)

Using this we get a map (evaluating on n⊗ [e]) N −→M . This completes the
proof.
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Using these three steps we can establish the proof of Shapiro’s lemma.

Definition 9 (Induced G-module). A G-module is said to be induced it there exists
and abelian group, i.e., a {1}-module, such that M = IndG1 (N) ∼= M ⊗Z Z[G].

Corollary 1. Induced G-modules are acyclic.

Proof. There exists a {1}-module (i.e., an abelian group) N so that M = IndG1 (N).
By Shapiro’s lemma,

H i(G,M) = H i(G, IndG1 (N)) ∼= H i({1}, N) = 0 ∀ i > 0

Hence M is acyclic.

Corollary 2. Let L/K be a Galois extension, then L naturally is a G-module for
G = Gal(L/K). We have

H i(Gal(L/K), L) = 0 ∀ i > 0

Proof. According to the normal basis theorem, there exists α ∈ L such that

{σ(α) : σ ∈ Gal(L/K)}

is a K-basis of L as a K-vector space. Consider the map K ⊗Z Z[G] −→ L given by
k⊗ [σ] 7→ kσ(α). Since every element of L can be uniquely written as

∑
σ∈G kσσ(α)

for kσ ∈ K, we get that L ∼= K⊗ZZ[G] ∼= IndG1 (K). By corollary 3, we are done.

Definition 10. For any cochain complex (A•, d•), the elements of Ai are called i-
cochains, elements of ker(di) are called i-cocycles and elements of im(d(i−1)) are called
i-coboundaries.

The first cohomology group H1(G,M)

We give a description ofH1(G,M) for a G-moduleM that is useful for computational
purposes. Let

C1(G,M) := {ϕ : G −→M}

be the 1-cochains,

Z1(G,M) := {ϕ ∈ C1(G,M) : ϕ(gh) = g · ϕ(h) + ϕ(g)}

be the 1-cocycles or the crossed homomorphisms and

B1(G,M) := {ϕ ∈ C1(G,M) : ∃m ∈M,ϕ(g) = g ·m−m ∀ g ∈ G}

be the 1-boundaries. Then

H1(G,M) =
Z1(G,M)

B1(G,M)
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The second cohomology group H2(G,M)

A 2-cocycle is a map f : G×G −→M satisfying

g1 · f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) = 0

for all g1, g2, g3 ∈ G. It classifies the short exact sequences

1 −→M −→ E −→ G −→ 1

for a fixed action of G on M .

Extended functoriality

Let M be a G-module and M ′ be a G′-module. Suppose that α : G′ −→ G be a
given group homomorphism. Let β : M −→M ′ be an abelian group homomorphism
such that β(α(g) · m) = g · β(m) for all m ∈ M, g ∈ G′. This gives a canonical
homomorphism

H i(G,M) −→ H i(G′,M ′)

Below are some principal examples of extended functoriality

(1) The cohomology groups don’t seem to carry a nontrivial G-action, because we
compute them by taking G-invariants. This can be reinterpreted in terms of extended
functoriality: let α : G −→ G be the conjugation by some fixed h,i.e., g 7→ h−1gh
and let β : M −→ M be the map m 7→ h ·m. Then the induced homomorphisms
H i(G,M) −→ H i(G.M) are all identity maps.

(2) [Restriction map] Let H ≤ G be a subgroup of G and M a G-module. Then
M is also an H-module. Let M ′ be the same M but the G-action forgot except H.
Then we get the restriction map

Res : H i(G,M) −→ H i(H,M)

This can be obtained in another way using the map M −→ IndGH(M) given by
m 7→

∑
i(gi ·m)⊗ [g−1i ]. Then we get the following by Shapiro’s lemma

H i(G,M) −→ H i(G, IndGH(M))
∼−→ H i(H,M)

(3) [Corestriction map] LetM be a G-module and consider the map IndGH(M) −→
M given by m ⊗ [g] 7→ g · m. This gives, applying Shapiro’s lemma, the following
so-called corestriction map

Cor : H i(H,M)
∼−→ H i(IndGH(M),M) −→ H i(G,M)
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(4) The composition Cor ◦ Res is given by

m 7→
∑
i

(gi ·m)⊗ [g−1i ] 7→
∑
i

m = [G : H]m

Thus the composition Cor◦Res : M −→M is the multiplication by the index [G : H].

Consequence. Let H be the trivial group. Then H i(H,M) = 0 for all i > 0.
In this case the composition Cor ◦ Res is multiplication by [G : H] = |G| map, i.e.,
m 7→ |G|m. Thus every cohomology groupH i(G,M) is annihilated by |G|. Therefore
M is a torsion module but not necessarily finite. In particular, when M is finitely
generated, H i(G,M) are finitely generated and being annihilated by |G|, we get that
H i(G,M) are all finite.

(5) [Inflation map] Let H E G be a normal subgroup. Let α : G −→ G/H be the
natural projection and β : MH ↪→M be the injection. Clearly G/H acts onMH and
hence MH is a G/H-module. Then we get canonical homomorphism, the inflation
homomorphism

Inf : H i(G/H,MH) −→ H i(G,M)

Galois Cohomology
Galois cohomology is group cohomology with Galois groups. For this, we need to
know about a certain kind of topology on Galois groups and profinite groups.

Profinite groups

A profinite group is a topological group which is Hausdorff and compact, and which
admits a basis of neighborhoods of the identity consisting of normal subgroups. More
explicitly, a profinite group is a group G plus a collection of subgroups of G of finite
index designated as open subgroups, such that the intersection of two open subgroups
is open, but the intersection of all of the open subgroups is trivial.

Definition 11 (Profinite group). A Profinite group is a topological group which is
the inverse limit of finite groups, each given the discrete topology.

A profinite group is compact and totally disconnected. The converse is also true.

Proposition 5. A compact totally disconnected topological group G is profinite.

Proof. Since G is totally disconnected and compact, the open sets of G form a base
of neighbourhoods of 1, the identity of G. Let U be an open subgroup of G. Consider
the left cosets gU for g ∈ G. This is an open cover of G. Since G is compact, there are
finitely many g1U, g2U, . . . , gkU such that G = ∪gjU . Then [G : U ] <∞. Therefore
the conjugates gUg−1 for g ∈ G are finite in number and their intersection V is both
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open and normal in G. Thus, we get a base of neighbourhoods of 1 which are normal
subgroups of G. Consider the inverse limit

lim
←−

G/V

taken over the quotients G/V where V runs through the base of normal neighbour-
hoods of 1. The map G −→ lim

←−
G/V is injective, continuous, and its image is

dense; a compactness argument then shows that it is an isomorphism. Hence G is
profinite.

The most interesting and important example for us is any Galois group. Let L/K
be a Galois extension, finite or infinite, the Gal(L/K) is a profinite group, in the
following way:
By, construction, Gal(L/K) is the inverse limit of the Galois groups Gal(Lj/K) for
finite Galois extensions K ⊆ Lj ⊆ L. Since each Gal(Lj/K) is finite and equipped
with discrete topology, we get that Gal(L/K) is finite. For example

GQ = Gal(Q/Q) = lim
←−

Gal(K/Q) ∀ K/Q, [K : Q] <∞

GFq
= Gal(Fq/Fq) = lim←−

n

Gal(Fqn/Fq) ∼= lim←−
n

Z/nZ = Ẑ

The profinite topology, i.e., the topology on a Galois group induced by the inverse
limit is special and is called the Krüll topology. We recall a theorem from the theory
of topological groups

Theorem 3. Let G be a topological group and N be a base of neighbourhoods of 1.
Then the following are true

(a) for all N1, N2 ∈ N , there exists an N ′ ∈ N such that 1 ∈ N ′ ⊆ N1 ∩N2;

(b) for all N ∈ N , there exists an N ′ ∈ N such that N ′N ′ ⊂ N ;

(c) for all N ∈ N , there exists an N ′ ∈ N such that N ′ ⊂ N−1 = {n−1 : n ∈ N}

(d) for all N ∈ N and all g ∈ G, there exists an N ′ ∈ N such that N ′ ⊂ gNg−1

(e) for all g ∈ G, the set {gN : N ∈ N} is a base of neighbourhoods of g.

Conversely, if G is a group and N is a nonempty set of subsets of G satisfying (a),
(b), (c) and (d), then there is a (unique) topology on G for which (e) holds.

Proof. Milne, Fields and Galois Theory, proposition 7.2

Let L/K be a Galois extension and G = Gal(L/K). Let S ⊂ L be a finite set. The
consider the set

G(S) := {σ ∈ G : σ(s) = s ∀ s ∈ S}

This is a subgroup of G. We claim the following:

15



Proposition 6. There is a unique structure of a topological group on G for which
the sets G(S) form an open neighbourhood base of 1. For this topology, the sets G(S)
with S G-stable form a neighbourhood base of 1 consisting of open normal subgroups.

Proof. It is easy to see that for two finite subsets S1, S2 of L, G(S1) ∩ G(S2) =
G(S1 ∪ S2), S1 ∪ S2 is finite. Hence (a) in theorem 27 is true. Also, (b) and (c) are
true since G(S) is a subgroup of G. We now show that (d) is true as well. Let S be
a finite subset of L. Then K(S)/K is a finite extension. Then there are only finitely
many K-homomorphisms K(S) −→ L. Since σ|K(S) = τ |K(S) implies σ(S) = τ(S),
the set S := ∪σ∈GσS is finite. Now, σ(S) = S for all σ ∈ G. Thus G(S) E G
and hence σG(S)σ−1 = G(S) ⊂ G(S). Hence by theorem 27, there exists a unique
topology on G such that {G(S) : S ⊂ L, |S| < ∞} is a base of neighbourhoods of
1.

Definition 12 (Krüll topology). The topology generated by the base of neighbour-
hoods of 1, namely G(S) for finite S ⊂ L, is called the Krüll topology on Gal(L/K).

If L/K is a Galois extension, but not necessarily finite, we make G = Gal(L/K) into
a profinite group by declaring that the open subgroups of G are precisely Gal(L/M)
for all finite subextensions M of L.

Theorem 4 (Generalized Galois correspondence). Let L/K be a Galois exten-
sion (not necessarily finite) and let G = Gal(L/K). There is a 1-1 correspondence
between Galois subextensions L/M/K and normal closed subgroups H given by

H 7−→ Fix(H) M 7−→ Gal(L/M)

Proof. N. Jacobson, Basic Algebra II, Theorem 8.16.

Cohomology of profinite groups

One can do group cohomology for groups which are profinite, not just finite, but
one has to be a bit careful: these groups only make sense when you carry along the
profinite topology.

Definition 13. If G is profinite, by a G-module we mean a topological abelian group
M with a continuous G-action on M . In particular, we say M is discrete if it has
the discrete topology; that implies that the stabilizer of any element of M is open,
and that M is the union of MH over all open subgroups H of G. Canonical example:
G = Gal(L/K) acting on L∗, even if L is not finite.

The category of discrete G-modules has enough injectives, so we can find injective
resolutions for M with discrete injective G-modules and define cohomology groups
for any discrete G-module. The main point is that we can compute them from their
finite quotients.

16



Proposition 7. Let M be a discrete G-module for a profinite group G. The coho-
mology groups H i(G,M) are the direct limit of H i(G/H,MH) for normal subgroups
H and the direct limit is taken with respect to the inflation homomorphism

Inf : H i(G/H,MH) −→ H i(G,M)

Proof. Milne, Class Field Theory, Proposition II.4.4.

We have talked about the inflation homomorphism before as an example of extended
functoriality. We give a formal definition below.

Definition 14 (Inflation homomorphism). Let H2 ⊆ H1 ⊆ G be inclusions of
subgroups of finite index. Then we have the inflation homomorphism

Inf : H i(G/H1,M
H1) −→ H i(G/H2,M

H2)

Via these maps, the groups H i(G/H,MH) form an inverse system and proposition
17 tells us that H i(G,M) is the direct limit of this system.

Hilbert’s theorem 90 and some applications

Theorem 5 (Hilbert’s Satz 90). Let L/K be a finite Galois extension of fields with
Galois group G = Gal(L/K). Let L× be the multiplicative group of nonzero elements
of L. Then H1(G,L×) = 0. Moreover, H1(GK , K

×
) = 1, wheher GK = Gal(K/K)

is the absolute Galois group of K.

Proof. We have to show that all 1-cocycles are 1-coboundaries. We denote the action
of the elements of G on L by xg for g ∈ G, x ∈ L×. Also, we assume that G is written
multiplicatively. Then

H1(G,L×) =
Z1(G,L×)

B1(G,L×)

where

Z1(G,L×) = {f : G −→ L× : f(gh) = f(g)hf(h) for all g, h ∈ G}
B1(G,L×) = {f : G −→ L× : f(g) = x(xg)−1 ∀ g ∈ G for some x ∈ L×}

Let f ∈ Z1(G,L×). Then the maps ϕg : L× −→ L given by x 7→ xgf(g) is an
automorphism of L. By linear independence of automorphisms we get that∑

g∈G

ϕg 6≡ 0

Then there exists x ∈ L such that

y =
∑
g∈G

xgf(g) 6= 0
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Now, for any h ∈ G, we get that

yh =
∑
g∈G

xghf(g) =
∑
g∈G

xghf(gh)(f(h))−1 = y(f(h))−1

Then, f ∈ B1(G,L×). This shows that every 1-cocycle is a 1-coboundary and hence
H1(G,L×) = 0.

Now, the cohomology group H1(GK , K
×

) is, by definition, the following direct limit

H1(GK , K
×

) = lim
−→

H1(GK/H, (K
×

)H)

Where the direct limit is taken through all open normal subgroups H of G and with
respect to the inflation homomorphisms. For any such open normal subgroup H,
GK/H ∼= Gal(LH/K) and (K

×
)H = LH for some finite extension LH/K. Thus

by Hilbert’s theorem 90 for finite extensions, we get that H1(GK , K
×

) = 1 since
H1(GK/H, (K

×
)H) = 1 for all open normal subgroups H of GK .

Corollary 3 (The classical version of Hilbert’s theorem 90). Let L/K be a
finite cyclic extension (i.e., a Galosi extension with cyclic Galois group) and let σ be
a generator of the Galois group G = Gal(L/K). Let α ∈ L be some element such
that NL/K(α) = 1. Then there exists β ∈ L such that α = β/σ(β).

Proof. Exercise. Hint: Use the fact that NL/K(α) = 1 ⇐⇒ ασ(α) · · ·σn−1(α) = 1,
where n = [L : K] and imitate the proof of Theorem 5.

Corollary 4 (Additive Hilbert’s theorem 90). Let L/K be a finite cyclic exten-
sion and σ be a generator of the Galois group Gal(L/K). Let α ∈ L be such that
TrL/K(α) = 0. Then there exists β ∈ L such that α = β − σ(β).

Proof. Exercise. Hint: Use the fact that TrL/K(α) = 0 ⇐⇒
∑n−1

j=0 σ
j(α) = 0,

where n = [L : K]. Now, try to define β ∈ L explicitly.

To demonstrate an application, we prove Exercise 1.12. from Silverman’s AEC.
Problem.
(a) Let V/K be an affine variety. Prove that

K[V ] = {f ∈ K[V ] : fσ = f ∀ σ ∈ GK}

(b) Prove that

Pn(K) = {P ∈ Pn(K) : P σ = P ∀ σ ∈ GK}

(c) Let φ : V1 −→ V2 be a rational map of projective varieties. Prove that φ is defined
over K if and only if φσ = φ for all σ ∈ GK .
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Solution. Since K[V ] = K[X]/I(V/K), any f ∈ K[V ] is represented by a polyno-
mial in K[X]. Then it’s clear that fσ = f for all σ ∈ GK . Therefore

K[V ] ⊂ {f ∈ K[V ] : fσ = f ∀ σ ∈ GK}

Let F ∈ K[X] such that F ≡ f (mod I(V )), where f is some element of K[V ] fixed
by all σ ∈ GK . Since F ∈ K[X], F σ is not necessarily the same as F . The map
σ 7→ F σ − F is non-trivial. For any σ, τ ∈ GK , we get that

F στ − F = F στ − F σ + F σ − F = (F τ − F )σ + (F σ − F )

Also, F σ ≡ fσ = f ≡ F (mod I(V )). Thus F σ − F ∈ I(V ) for all σ ∈ GK . This
shows that the map σ 7→ F σ −F is a 1-cocycle GK −→ I(V ). Therefore, if we write

F (X) =
∑
α

aαX
α

for aα ∈ K
+, we get a 1-cocycle GK −→ K

+ and by B.2.5a, H1(GK , K
+

) = 0, thus
they are 1-coboundaries. Thus there exists G ∈ I(V ) such that

σ 7→ F σ − F ≡ σ 7→ Gσ −G
(for all σ ∈ GK)

This shows that

(F −G)σ − (F −G) = 0 ∀ σ ∈ GK

Thus F −G ∈ K[X]. This shows that f ∈ K[V ]. This completes the proof.

(b) Let
P ∈ {Pn(K) : P σ = P ∀ σ ∈ GK}

and P = [x0 : x1 : · · · : xn] be a homogeneous coordinate for P ∈ Pn(K). Since
P σ = P as homogeneous coordinates, there exists λσ ∈ K

× such that xσi = λσxi for
i = 0, 1, . . . , n. We claim that σ 7→ λσ is a 1-cocycle GK −→ K

×. Indeed, for σ, τ ∈
GK , xστi = λστxi. Also, xστi = (xσi )τ = λτxi and (xσi )τ = (λσxi)

τ = λτσx
τ
i = λτσλτxi.

Since xi 6= 0 for at least one 0 ≤ i ≤ n, we get that

λστ = λτσλτ ∀ σ, τ ∈ GK

By Hilbert’s theorem 90, we get that there exists α ∈ K× such that λσ = ασ/α for
all σ ∈ GK . Therefore, we get xσi = ασ/αxi or (βxi)

σ = βxi for all σ ∈ GK . Thus
αxi ∈ K for all σ ∈ GK , where β = α−1. This shows that

P = P σ = [βx0 : βx1 : · · · : βxn] ∈ Pn(K)
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Therefore {Pn(K) : P σ = P ∀ σ ∈ GK} ⊂ Pn(K). The other inclusion is clear. This
completes the proof.

(c) Let V1, V2 ⊂ Pn be two projective varieties over K and φ : V1 −→ V2 be a rational
map. Then there are functions f0, f1, . . . , fn ∈ K(V1) such that fj are defined for all
points P ∈ V1. If φσ = φ for all σ ∈ GK , then we get that for any P in V1, we get
that

[fσ0 (P ) : fσ1 (P ) : · · · : fσn (P )] = [f0(P ) : f1(P ) : · · · : fn(P )]

By part (b), there exists λ ∈ K× such that

(λfj)
σ = λfj ∀ σ ∈ GK , 0 ≤ j ≤ n

Hence by part (a) λfj ∈ K(V1). This completes the proof.
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