Basics of Group Cohomology

Shubhrajit Bhattacharya
Chennai Mathematical Institute shubhrajit@cmi.ac.in

Contents

Group Cohomology

G-modules 1
Injective G-modules 3
Right derived functors 5
Two important consequences of the long exact sequence 9
Cohomology of finite groups 9
The first cohomology group $H^{1}(G, M)$ 12
The second cohomology group $H^{2}(G, M)$ 13
Extended functoriality 13
Galois Cohomology
Profinite groups 14
Cohomology of profinite groups 16
Hilbert's theorem 90 and some applications 17
References \& Further Reading 21
Group Cohomology

G-modules

Let G be a group, written multiplicatively and A be an abelian group, written additively. We say that G acts on A if there is a group homomorphism

$$
\rho: G \longrightarrow \operatorname{Aut}(A)
$$

Definition 1. An abelian group A is said to be a G-module if G acts on A.

But, then how it is a module and what is even the base ring here? Well, to answer that, consider the set $\mathbb{Z}[G]$ of formal sums of the form

$$
\sum_{g \in G} n_{g} g \quad n_{g} \in \mathbb{Z}
$$

The sum and product on the set $\mathbb{Z}[G]$ is defined as follows

$$
\begin{gathered}
\sum_{g \in G} n_{g} g+\sum_{g \in G} m_{g} g=\sum_{g \in G}\left(n_{g}+m_{g}\right) g \\
\left(\sum_{g \in G} n_{g} g\right) \cdot\left(\sum_{g \in G} m_{g} g\right)=\sum_{\substack{g \in G \\
h \in G}} n_{g} m_{h}(g h)
\end{gathered}
$$

Thus the ring structure in $\mathbb{Z}[G]$ is clear. We define the left-multiplication with elements from A by elements from $\mathbb{Z}[G]$ as follows

$$
\left(\sum_{g \in G} n_{g} g\right) a=\sum_{g \in G} n_{g}(g a)
$$

$g a$ is the action of g on a. Since A is an abelian group, $\sum_{g \in G} n_{g}(g a) \in A$. This makes A into a $\mathbb{Z}[G]$-module.

Definition 2 (G-module homomorphism). Let M, N be G-modules. $A G$-module homomorphism is a group homomorphism $\varphi: M \longrightarrow N$ such that $\varphi(g m)=g \varphi(m)$ for all $m \in M$.
here $g m$ denotes the action of g on m and $g \varphi(m)$ denotes the action of g on $\varphi(m)$. For a G-module A, let A^{G} be the abelian group of G-invariant points, i.e.

$$
A^{G}:=\{a \in A: g a=a \forall g \in G\}
$$

It can be easily verified that if $f: A \longrightarrow B$ is a G-module homomorphism then, then f restricted to A^{G} maps to B^{G} and hence we get a group homomorphism $f: A^{G} \longrightarrow$ B^{G}. The assignment $A \mapsto A^{G}$ defines a functor from the category of G-modules to the category of abelian groups. This functor is left exact but not right exact, i.e. for any shot exact sequence of G-modules

$$
0 \longrightarrow A \longrightarrow A^{\prime} \longrightarrow A^{\prime \prime} \longrightarrow 0
$$

Then the following sequence is also exact

$$
0 \longrightarrow A^{G} \longrightarrow\left(A^{\prime}\right)^{G} \longrightarrow\left(A^{\prime \prime}\right)^{G}
$$

But, not necessarily the map $\left(A^{\prime}\right)^{G} \longrightarrow\left(A^{\prime \prime}\right)^{G}$ is not necessarily surjective. An example is as follows, consider the short exact sequence

$$
0 \longrightarrow \mathbb{Z} / p \mathbb{Z} \longrightarrow \mathbb{Z} / p^{2} \mathbb{Z} \longrightarrow \mathbb{Z} / p \mathbb{Z} \longrightarrow 0
$$

of $\mathbb{Z} / p \mathbb{Z}$-modules, where $\mathbb{Z} / p \mathbb{Z}$ acts on the middle factor by the rule $g(a)=a(1+p g)$. Then the $\operatorname{map}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)^{\mathbb{Z} / p \mathbb{Z}} \longrightarrow(\mathbb{Z} / p \mathbb{Z})^{\mathbb{Z} / p \mathbb{Z}}$ is the 0 map but $(\mathbb{Z} / p \mathbb{Z})^{\mathbb{Z} / p \mathbb{Z}}$ is nontrivial. Therefore this functor is not right exact.

Injective G-modules

Definition 3 (Injective G-module). $A G$-module M is said to be injective if for every inclusion $A \subset B$ of G-modules and G-module homomorphism $\varphi: A \longrightarrow M$, there exists a G-module homomorphism $\psi: B \longrightarrow M$ such that $\left.\psi\right|_{A}=\varphi$.

We prove the key theorem here.
Theorem 1. Every G-module A can be embedded into an injective G-module.
Proof. We will need the following two lemmas:
Lemma 1. Let G be the trivial group. Then every abelian group is a G-module. An abelian group A is injective if and only if A is divisible, i.e. the map $x \mapsto n x$ is surjective for all $n \in \mathbb{N}$.

Proof. Let A be injective. Let, if possible, A be not divisible. Then, there exists $n>1$ and $y \in A$ such that $n x \neq y$ for any $x \in A$. Consider the map $\mathbb{Z} \longrightarrow A$ given by $m \mapsto m y$. Then this is a G-module homomorphism as it is a group homomorphism. But since $y \neq n x$ for all $x \in A$, the map ($m \mapsto m y$) can't be extended to $\frac{1}{n} \mathbb{Z}$, but $\mathbb{Z} \subset \frac{1}{n} \mathbb{Z}$ is an inclusion of abelian groups. A contradiction!
Conversely suppose, A is divisible, i.e. the map $x \mapsto n x$ is surjective for all $n \in$ \mathbb{N}. Let $M \subset N$ be an inclusion of abelian groups and $\varphi: M \longrightarrow A$ be a group homomorphism. Then consider the set S of pairs ($M^{\prime}, \varphi^{\prime}$) where $M \subset M^{\prime} \subset N$ and $\varphi^{\prime}: M^{\prime} \longrightarrow A$ a group homomorphism such that $\left.\varphi\right|_{A}=\varphi$. This set is nonempty since $(M, \varphi) \in S$. We define a partial order on S, as follows, we say that

$$
\left(M_{1}, \varphi_{1}\right) \leq\left(M_{2}, \varphi_{2}\right)
$$

if $M_{1} \subset M_{2}$ and $\left.\varphi_{2}\right|_{M_{1}}=\varphi_{1}$. For any chain in S of the form $\left(M_{i}, \varphi_{i}\right)_{i \in I}$ for some indexing set I. We get a map $\boldsymbol{\varphi}: \bigcup_{i \in I} M_{i} \longrightarrow A$ given by $a\left(\in M_{i}\right) \mapsto \varphi_{1}(a)$. Then we get that $\left(\bigcup_{i \in I} M_{i}, \varphi\right)$ is an upper bound for the chain $\left(M_{i}, \varphi_{i}\right)_{i \in I}$. The Zorn's lemma applies and we get a maximal element (\mathcal{M}, ψ). We claim that $\mathcal{M}=N$. Suppose the contrary. Then choose $h \in N \backslash \mathcal{M}$ and consider the subgroup $\langle h\rangle$ of N. If $\mathcal{M} \cap\langle h\rangle=\emptyset$ then the $\operatorname{sum} \mathcal{M} \oplus\langle h\rangle$ is a larger subgroup of N than \mathcal{M} and we can extend ψ to $\mathcal{M} \oplus\langle h\rangle$ by defining ψ at h arbitrarily and extending by linearity.

Now, let $\mathcal{M} \cap\langle h\rangle \neq \emptyset$. Take $n h \in \mathcal{M} \cap\langle h\rangle$ so that n is minimal. Then $\psi(n h)$ makes sense as $n h \in \mathcal{M}$. Since A is divisible, there exists $g \in A$ so that $n g=\psi(n h)$. By defining $\psi(h):=g$, we get an extension of ψ to $\mathcal{M} \oplus\langle h\rangle$. This is a contradiction to the maximality of (\mathcal{M}, ψ). Therefore $N=\mathcal{M}$.

Lemma 2. Every abelian group A can be embedded inside an injective abelian group.
Proof. Consider the abelian group \mathbb{Q} / \mathbb{Z}. This is clearly divisible and hence injective by lemma 1. Consider the abelian group A. Let $a \in A$ be a nonzero element. Consider the subgroup $\langle a\rangle \subset A$. Then define a map $\varphi_{a}:\langle a\rangle \longrightarrow \mathbb{Q} / \mathbb{Z}$ by the following rule

$$
\varphi_{a}(a)= \begin{cases}1 & \text { when } a \text { has infinite order } \\ \frac{1}{n} & \text { when order of } a \text { is } n \in \mathbb{N}\end{cases}
$$

Since \mathbb{Q} / \mathbb{Z} is injective, there exists $\psi_{a}: A \longrightarrow \mathbb{Q} / \mathbb{Z}$ which extends φ_{a}. By the universal property of product in a category, this collection $\left\{\psi_{a}\right\}_{a \in A \backslash\{0\}}$ defines a unique map

$$
\psi: A \longrightarrow \prod_{a \in A \backslash\{0\}} \mathbb{Q} / \mathbb{Z}
$$

By definition $\psi_{a}(a)=0$ if and only if $a=0$. Thus ψ is an injective map. Thus we get an embedding of A into $\prod_{a \in A \backslash\{0\}} \mathbb{Q} / \mathbb{Z}$, which is an injective and hence divisible group.

By lemma 5 and lemma 6 we get that the abelian group A can be embedded into a divisible group B. Using that we can embed A into $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], B)$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], B)$ is an injective G-module.

Following theorem 1 , we embed A into an injective G-module I_{0}, then embed I^{0} / A to a G-module I^{1} and continue the process. We get a long exact sequence

$$
0 \longrightarrow A \longrightarrow I^{0} \xrightarrow{d^{0}} I^{1} \xrightarrow{d^{1}} I^{2} \longrightarrow \cdots
$$

Definition 4 (Injective resolution). The exact sequence obtained above is called an injective resolution of A.

Starting with an injective resolution of A and then taking the G-invariant functor, we get a cochain complex

$$
0 \longrightarrow\left(I^{0}\right)^{G} \xrightarrow{d^{0}}\left(I^{1}\right)^{G} \xrightarrow{d^{1}}\left(I^{2}\right)^{G} \xrightarrow{d^{2}} \cdots
$$

i.e., $d^{(i+1)} \circ d^{i}=0$ or, in other words, $\operatorname{im}\left(d^{i}\right) \subseteq \operatorname{ker}\left(d^{(i+1)}\right)$. By definition, d^{-1} is the 0 -map $0 \longrightarrow\left(I^{0}\right)^{G}$. Then, we define the $i^{\text {th }}$ cohomology group as follows

$$
H^{i}(G, A):=\frac{\operatorname{ker}\left(d^{i}\right)}{\operatorname{im}\left(d^{(i-1)}\right)} \quad \forall i \geq 0
$$

By definition, we can see that $H^{0}(G, A)=A^{G}=\{a \in A: g a=a \forall g \in G\}$. Let M, N be two G-modules and let $\operatorname{Hom}_{G}(M, N)$ be the group of all G-module maps $f: M \longrightarrow N$. Let $\varphi \in \operatorname{Hom}_{G}(M, N)$. Take two injective resolutions

$$
\begin{aligned}
& 0 \longrightarrow M \longrightarrow I^{0} \xrightarrow{d^{0}} I^{1} \xrightarrow{d^{1}} I^{2} \longrightarrow \cdots \\
& 0 \longrightarrow N \longrightarrow J^{0} \xrightarrow{d^{0}} J^{1} \xrightarrow{d^{1}} J^{2} \longrightarrow \cdots
\end{aligned}
$$

Note the abuse of notations: we have used d^{i} for both the injective resolutions even though they are not the same!

Then, by theorem 1, we get the following commutative diagram

Figure 1

Now, taking the G-invariant functor, the vertical arrows in figure 8 induce maps

$$
H^{i}(\varphi): H^{i}(G, M) \longrightarrow H^{i}(G, N)
$$

between cohomology groups.

Right derived functors

The following is a pretty straightforward observation
Proposition 1. For a fixed choice of injective resolutions for M and N, the maps on cohomology groups, i.e., $H^{i}(\varphi): H^{i}(G, M) \longrightarrow H^{i}(G, N)$ do not depend on the choice of the maps φ_{i} 's.

Proof. It's enough to prove that if $\varphi=0$, then $H^{i}(\varphi)=0$ for all i regardless of the choice of φ_{i} 's. We construct maps $g_{i}: I^{(i+1)} \longrightarrow J^{i}$, with the convention that g^{-1} is the 0 -map, such that $\varphi_{i}=g_{i} \circ d^{i}+d^{(i-1)} \circ g_{i-1}$. We construct it inductively given the existence of φ_{i-1}, g_{i-1} and the injectivity of J_{i} 's. Suppose that we have constructed g_{i-1}. We now have the following diagram:

Figure 2
In $\varphi_{i}=g_{i} \circ d^{i}+d^{(i-1)} \circ g_{i-1}, d^{i}$ is the map $I^{i} \longrightarrow I^{(i+1)}$ and $d^{(i-1)}$ is the map $J^{(i-1)} \longrightarrow J^{i}$. We have the inclusion of G-modules $\operatorname{im}\left(d^{i}\right) \subseteq I^{(i+1)}$. We define the map $\tilde{g}_{i}: \operatorname{im}\left(d^{i}\right) \longrightarrow J^{i}$ as follows: Let $a \in \operatorname{im}\left(d^{i}\right)$ Then there exists $b \in I^{i}$ such that $a=d^{i}(b)$. Then

$$
\tilde{g}_{i}(a):=\varphi_{i}(b)-d^{(i-1)}\left(g_{i-1}(b)\right)
$$

We claim that this map is well defined. Let $b_{1}, b_{2} \in I^{i}$ such that $d^{i}\left(b_{1}\right)=a=d^{i}\left(b_{2}\right)$. Since $d\left(b_{1}-b_{2}\right)=0, b_{1}-b_{2} \in \operatorname{ker}\left(d^{i}\right)=\operatorname{im}\left(d^{(i-1)}\right)$. There exists $b_{\circ} \in I^{(i-1)}$, such that $d^{(i-1)}\left(b_{\circ}\right)=b_{1}-b_{2}$. Then we must prove

$$
\begin{gather*}
\varphi_{i}\left(b_{1}\right)-d_{i-1}\left(g^{(i-1)}\left(b_{1}\right)\right)=\varphi_{i}\left(b_{2}\right)-d^{(i-1)}\left(g^{(i-1)}\left(b_{2}\right)\right) \\
\Longleftrightarrow \varphi_{i}\left(b_{1}-b_{2}\right)=d^{(i-1)}\left(g_{i-1}\left(b_{1}-b_{2}\right)\right) \\
\Longleftrightarrow \varphi_{i}\left(d^{(i-1)}\left(b_{\circ}\right)\right)=d^{(i-1)}\left(g_{i-1}\left(d^{(i-1)}\left(b_{\circ}\right)\right)\right)
\end{gather*}
$$

Hence it's equivalent to show (\dagger). By induction hypothesis, $\varphi_{i-1}=g_{i-1} \circ d^{(i-1)}+$ $d^{(i-2)} \circ g_{i-2}$. Then

$$
\begin{gather*}
\varphi_{i-1}\left(b_{\circ}\right)=g_{i-1} \circ d^{(i-1)}\left(b_{\circ}\right)+d^{(i-2)} \circ g_{i-2}\left(b_{\circ}\right) \\
\Longrightarrow d^{(i-1)}\left(\varphi_{i-1}\left(b_{\circ}\right)\right)=d^{(i-1)}\left(g_{i-1} \circ d^{(i-1)}\left(b_{\circ}\right)+d^{(i-2)} \circ g_{i-2}\left(b_{\circ}\right)\right) \\
=d^{(i-1)}\left(g_{i-1}\left(d^{(i-1)}\left(b_{\circ}\right)\right)\right)
\end{gather*}
$$

Since figure 1 is commutative, we get that

$$
\varphi_{i}\left(d^{(i-1)}\left(b_{\circ}\right)\right)=d^{(i-1)}\left(\varphi_{i-1}\left(b_{\circ}\right)\right)
$$

Comparing $(\boldsymbol{\oplus})$ and (\ddagger) we get (\dagger). The base case is $g_{-1}=0$, thus we have constructed a map $\tilde{g}_{i}: \operatorname{im}\left(d^{i}\right) \longrightarrow J^{i}$. Since J^{i} is an injective G-module and $\operatorname{im}\left(d^{i}\right) \subseteq I^{(i+1)}$ is an inclusion of G-modules, there exists $g_{i}: I^{(i+1)} \longrightarrow J^{i}$ such that $\left.g_{i}\right|_{\mathrm{im}\left(d^{i}\right)} \equiv \tilde{g}_{i}$. This g_{i} is the desired map as we can easily verify the relation $\varphi_{i}=g_{i} \circ d^{i}+d^{(i-1)} \circ g_{i-1}$. This completes the induction step and hence the proof of existence of such collection of maps $\left\{g_{i}\right\}_{i \geq-1}$. From these maps we can conclude that $H^{i}(\varphi)$ are all 0 -maps. Hence $H^{i}(\varphi)$ is dependent only on φ. The following noncommutative diagram sums up the construction

Figure 3

Definition 5 (Cochain homotopy). The maps g_{i}, constructed above, are called cochain homotopy.
We make a wonderful observation. Let $M=N$ and $\varphi: M \longrightarrow N$ be the identity map. Then $H^{i}(\varphi)$ are the canonical induced maps $H^{i}(\varphi): H^{i}(G, M) \longrightarrow H^{i}(G, N)=$ $H^{i}(G, M)$. This shows that $H^{i}(G, M)$ are unique up to isomorphism and independent of the choice of injective resolution. Similarly, the maps $H^{i}(\varphi)$ are also independent of the choice of injective resolution and the maps φ_{i} 's. Hence H^{i} defines a functor from the category \boldsymbol{G}-Mod of G-modules to the category $\mathbf{A b}$ of abelian groups.
Definition 6 (Right derived functors). The functors H^{i} from \boldsymbol{G}-Mod to $\mathbf{A b}$ are called the right derived functors of the G-invariant functor.
Proposition 2 (Short to Long Exact Sequence in Cohomolgy). Given any short exact sequence

$$
0 \longrightarrow M \longrightarrow M^{\prime} \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

There is a corresponding long exact sequence

Figure 4
The maps δ_{i} are called the connecting homomorphism.
Proof. The proof is based on the following lemma, the so-called snake lemma
Lemma 3 (Snake lemma). For any commutative diagram with exact rows, as below,

Figure 5
there exists a canonical map $\delta: \operatorname{ker}\left(f_{2}\right) \longrightarrow \operatorname{coker}\left(f_{0}\right)$ forming the following long exact sequence

$$
0 \longrightarrow \operatorname{ker}\left(f_{0}\right) \longrightarrow \operatorname{ker}\left(f_{1}\right) \longrightarrow \operatorname{ker}\left(f_{2}\right) \xrightarrow{\delta} \operatorname{coker}\left(f_{0}\right) \longrightarrow \operatorname{coker}\left(f_{1}\right) \operatorname{coker}\left(f_{2}\right) \longrightarrow 0
$$

Proof. We just sketch how to define the map δ. Let $x \in \operatorname{ker}\left(f_{2}\right) \subseteq M^{\prime \prime}$. Exactness of the upper row tells us the map $M^{\prime} \longrightarrow M^{\prime \prime}$ is surjective. Choose $y \in M^{\prime}$ so that the image of y in $M^{\prime \prime}$ is x. Then we push y to N^{\prime} via f_{1}. Again exactness tells us that there is a preimage of $f_{1}(y)$ in N. Thus we get δ. The independence on the choice of y can be proved likewise we did earlier using the exactness of commutativity of figure 12.
we can use the snake lemma to finish the proof.
Proposition 3. Let M be an injective G-module. Then $H^{i}(G, M)=0$ for all $i \geq 1$.
Proof. Since M is injective itself, we can take $I^{0}=M$. Thus we get the following injective resolution for M

$$
0 \longrightarrow M \longrightarrow M \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots
$$

Since $H^{i}(G, M)$ are independent of the choice of the injective resolution, we get that $H^{i}(G, M)=0$ for all $i \geq 1$.

Definition 7 (Acyclic module). Let M be a G-module. Then M is said to be acyclic if $H^{i}(G, M)=0$ for all $i \geq 1$.

Proposition 3 shows us that an injective module is acyclic. We note the existence of a simple injective resolution in case of an injective module. It turns out that we can replace injective resolution in the definition by an acyclic resolution for the purposes of doing a computation. We state the following proposition in this regard

Proposition 4. Let

$$
0 \longrightarrow M \longrightarrow M_{0} \longrightarrow M_{1} \longrightarrow M_{2} \longrightarrow \cdots
$$

be an exact sequence of G-modules with each M_{i} acyclic. Consider the cochain complex obtained by applying the G-invariant functor

$$
0 \longrightarrow\left(M_{0}\right)^{G} \longrightarrow\left(M_{1}\right)^{G} \longrightarrow\left(M_{2}\right)^{G} \longrightarrow \cdots
$$

The cohomology groups of this cochain complex coincides with the cohomology groups $H^{i}(G, M)$.

Two important consequences of the long exact sequence

(•) Let

$$
0 \longrightarrow M \longrightarrow M^{\prime} \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

be an exact sequence of G-modules and $H^{1}(G, M)=0$, then

$$
0 \longrightarrow M^{G} \longrightarrow\left(M^{\prime}\right)^{G} \longrightarrow\left(M^{\prime \prime}\right)^{G} \longrightarrow 0
$$

is also an exact sequence.
$(\bullet \bullet)$ Let M^{\prime} be acyclic in the short exact sequence above. Then the connecting homomorphisms δ_{i} are isomorphisms

$$
H^{i}\left(G, M^{\prime \prime}\right) \stackrel{\delta_{i}}{\cong} H^{i+1}(G, M)
$$

Cohomology of finite groups

Observe that if G is the one element group, then any G-module is acyclic. This is because starting with any injective resolution of M, taking G-invariant does not the affect the exactenss and hence the cohomology groups are all trivial. In fact, G-modules are precisely the abelian groups. Thus every abelian group, thought as a G-module for the trivial group G, is acyclic.
Let G be any group and $H \leq G$ be any subgroup. Let M be an H-module. Then it is a natural question to ask if we can somehow upgrade M to get a G-module. We know that M is actually a $\mathbb{Z}[H]$-module for the group ring $\mathbb{Z}[H]$. Also, H being a subgroup, $\mathbb{Z}[G]$ is also a $\mathbb{Z}[H]$-module. Then we take the tensor product $M \otimes_{\mathbb{Z}[H]} \mathbb{Z}[G]$. Clearly this becomes a $\mathbb{Z}[G]$-module over the group ring $\mathbb{Z}[G]$ and hence a G-module.

Definition 8 (Induction). Let M be an H-module for some subgroup $H \leq G$ of a group G. We define the induction of M from H to G, denoted by $\operatorname{Ind}_{H}^{G}(M)$, is defined to be

$$
\operatorname{Ind}_{H}^{G}(M):=M \otimes_{\mathbb{Z}[H]} \mathbb{Z}[G]
$$

We may also identify $\operatorname{Ind}_{H}^{G}(M)$ with the set of maps $\phi: G \longrightarrow M$ such that $\phi(g h)=$ $h \cdot \phi(g)$ for all $h \in H$ and $g \in G$. The action of G on $\operatorname{Ind}_{H}^{G}(M)$ is given by $g \cdot \phi\left(g^{\prime}\right)=\phi\left(g g^{\prime}\right) . \mathbb{Z}[G]$ contains a copy of G inside it. Let $[g] \in \mathbb{Z}[G]$ be the image of $g \in G$ in $\mathbb{Z}[G]$. The element $m \otimes[g] \in M \otimes_{\mathbb{Z}[H]} \mathbb{Z}[G]$ corresponds to the $\operatorname{map} \varphi_{m, g}: G \longrightarrow M$ given by

$$
\varphi_{m, g}\left(g^{\prime}\right)=\left\{\begin{array}{ll}
\left(g g^{\prime}\right) \cdot m & g g^{\prime} \in H \\
0 & g g^{\prime} \notin H
\end{array} \quad \forall g^{\prime} \in G\right.
$$

Theorem 2 (Shapiro's lemma). Let H be a subgroup of G and N is an H-module. There is a canonical isomorphism

$$
H^{i}\left(G, \operatorname{Ind}_{H}^{G}(N)\right) \longrightarrow H^{i}(H, N)
$$

In particular, N is acyclic if and only if $\operatorname{Ind}_{H}^{G}(N)$ is acyclic.
Proof. We only sketch the key points of the proof.

1. It is easy to check that

$$
H^{0}\left(G, \operatorname{Ind}_{H}^{G}(N)\right)=\left(\operatorname{Ind}_{H}^{G}(N)\right)^{G}=N^{H}=H^{0}(H, N)
$$

2. The functor $\operatorname{Ind}_{H}^{G}$ from \boldsymbol{H}-Mod to \boldsymbol{G}-Mod is both right and left exact, i.e., for every injective $\mathbb{Z}[H]$-module map $\varphi: A \longrightarrow B$, the induced map

$$
\varphi \otimes_{\mathbb{Z}[H]} \mathbb{Z}[G]: A \otimes_{\mathbb{Z}[H]} \mathbb{Z}[G] \longrightarrow B \otimes_{\mathbb{Z}[H]} \mathbb{Z}[G]
$$

given by $a \otimes[g] \mapsto \varphi(a) \otimes[g]$ is also injective. In face, $\mathbb{Z}[G]$ is a free $\mathbb{Z}[H]$ module.
3. If I is an injective H-module then $\operatorname{Ind}_{H}^{G}(I)$ is an injective G-module. For proving this we need the following lemma

Lemma 4. Let H be a subgroup of G, let M be a G-module, and let N be an H-module. Then there are natural isomorphisms

$$
\begin{aligned}
\operatorname{Hom}_{G}\left(M, \operatorname{Ind}_{H}^{G}(N)\right) & \cong \operatorname{Hom}_{H}(M, N) \\
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G}(N), M\right) & \cong \operatorname{Hom}_{H}(N, M)
\end{aligned}
$$

Proof. Wherever in the proof I put a '.', I mean group action and only juxtaposition means product in either group or module. First we consider the case $M=N$. Then the identity map $M \longrightarrow N=M$ corresponds to the following maps:
$\Phi: \operatorname{Ind}_{H}^{G}(M) \longrightarrow M$ given by

$$
\sum_{g \in G} m_{g} \otimes[g] \longmapsto \sum_{g \in G} g \cdot m_{g}
$$

$\Psi: M \longrightarrow \operatorname{Ind}_{H}^{G}(M)$ given by

$$
m \longmapsto \sum_{i}\left(g_{i} \cdot m\right) \otimes\left[g_{i}^{-1}\right]
$$

where the sum is taken over a set distinct representatives g_{i} of left cosets of H in G, given that $[G: H]<\infty$. The map Ψ doesn't depend on the choice of g_{i} 's and hence

$$
\Psi(g \cdot m)=\Psi\left(\sum_{i}\left(g g_{i} \cdot m\right) \otimes\left[\left(g g_{i}\right)^{-1}\right]\right)[g]=\Psi(m)[g]
$$

Therefore Ψ is clearly compatible with G-action.
Now, let N be any H-module. Let $\varphi \in \operatorname{Hom}_{H}(M, N)$. Then we get a map

$$
\varphi \otimes \mathbb{Z}[G]: \operatorname{Ind}_{H}^{G}(M) \longrightarrow \operatorname{Ind}_{H}^{G}(N)
$$

given by $m \otimes[g] \mapsto \varphi(m) \otimes[g]$. Therefore

$$
(\varphi \otimes \mathbb{Z}[G]) \circ \Psi: M \longrightarrow \operatorname{Ind}_{H}^{G}(N)
$$

is the required map in $\operatorname{Hom}_{G}\left(M, \operatorname{Ind}_{H}^{G}(N)\right)$. This gives a map

$$
\operatorname{Hom}_{H}(M, N) \longrightarrow \operatorname{Hom}_{G}\left(M, \operatorname{Ind}_{H}^{G}(N)\right)
$$

We have similar maps, as Φ and Ψ,

$$
\begin{aligned}
& \tilde{\Phi}: \operatorname{Ind}_{H}^{G}(N) \longrightarrow N \\
& \tilde{\Psi}: N \longrightarrow \operatorname{Ind}_{H}^{G}(N)
\end{aligned}
$$

Let $\tilde{\varphi} \in \operatorname{Hom}_{G}\left(M, \operatorname{Ind}_{H}^{G}(N)\right)$. Then, for any $m \in M, \tilde{\varphi}(m) \in \operatorname{Ind}_{H}^{G}(N)$ can be identified with a map $\phi: G \longrightarrow N$. Now, compose with the map Φ to get the map which takes ϕ to $\phi(e) \in N$. Thus we get a map

$$
\operatorname{Hom}_{G}\left(M, \operatorname{Ind}_{H}^{G}(N)\right) \longrightarrow \operatorname{Hom}_{H}(M, N)
$$

On the other hand, let $\psi \in \operatorname{Hom}_{H}(N, M)$. This induces the map

$$
\psi \otimes \mathbb{Z}[G]: \operatorname{Ind}_{H}^{G}(N) \longrightarrow \operatorname{Ind}_{H}^{G}(M)
$$

Then $\Phi \circ(\psi \otimes \mathbb{Z}[G])$ is the required map in $\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G}(N), M\right)$. Hence we get a map

$$
\operatorname{Hom}_{H}(N, M) \longrightarrow \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G}(N), M\right)
$$

On the other hand, let $\tilde{\psi} \in \operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G}(N), M\right)$. We have a map

$$
\tilde{\Psi}: N \longrightarrow \operatorname{Ind}_{H}^{G}(N)
$$

Using this we get a map (evaluating on $n \otimes[e]) N \longrightarrow M$. This completes the proof.

Using these three steps we can establish the proof of Shapiro's lemma.
Definition 9 (Induced G-module). A G-module is said to be induced it there exists and abelian group, i.e., a $\{1\}$-module, such that $M=\operatorname{Ind}_{1}^{G}(N) \cong M \otimes_{\mathbb{Z}} \mathbb{Z}[G]$.

Corollary 1. Induced G-modules are acyclic.
Proof. There exists a $\{1\}$-module (i.e., an abelian group) N so that $M=\operatorname{Ind}_{1}^{G}(N)$. By Shapiro's lemma,

$$
H^{i}(G, M)=H^{i}\left(G, \operatorname{Ind}_{1}^{G}(N)\right) \cong H^{i}(\{1\}, N)=0 \quad \forall i>0
$$

Hence M is acyclic.
Corollary 2. Let L / K be a Galois extension, then L naturally is a G-module for $G=\operatorname{Gal}(L / K)$. We have

$$
H^{i}(\operatorname{Gal}(L / K), L)=0 \quad \forall i>0
$$

Proof. According to the normal basis theorem, there exists $\alpha \in L$ such that

$$
\{\sigma(\alpha): \sigma \in \operatorname{Gal}(L / K)\}
$$

is a K-basis of L as a K-vector space. Consider the map $K \otimes_{\mathbb{Z}} \mathbb{Z}[G] \longrightarrow L$ given by $k \otimes[\sigma] \mapsto k \sigma(\alpha)$. Since every element of L can be uniquely written as $\sum_{\sigma \in G} k_{\sigma} \sigma(\alpha)$ for $k_{\sigma} \in K$, we get that $L \cong K \otimes_{\mathbb{Z}} \mathbb{Z}[G] \cong \operatorname{Ind}_{1}^{G}(K)$. By corollary 3, we are done.
Definition 10. For any cochain complex $\left(A^{\bullet}, d^{\bullet}\right)$, the elements of A^{i} are called i cochains, elements of $\operatorname{ker}\left(d^{i}\right)$ are called i-cocycles and elements of $\operatorname{im}\left(d^{(i-1)}\right)$ are called i-coboundaries.

The first cohomology group $H^{1}(G, M)$

We give a description of $H^{1}(G, M)$ for a G-module M that is useful for computational purposes. Let

$$
C^{1}(G, M):=\{\varphi: G \longrightarrow M\}
$$

be the 1-cochains,

$$
Z^{1}(G, M):=\left\{\varphi \in C^{1}(G, M): \varphi(g h)=g \cdot \varphi(h)+\varphi(g)\right\}
$$

be the 1-cocycles or the crossed homomorphisms and

$$
B^{1}(G, M):=\left\{\varphi \in C^{1}(G, M): \exists m \in M, \varphi(g)=g \cdot m-m \forall g \in G\right\}
$$

be the 1-boundaries. Then

$$
H^{1}(G, M)=\frac{Z^{1}(G, M)}{B^{1}(G, M)}
$$

The second cohomology group $H^{2}(G, M)$

A 2-cocycle is a map $f: G \times G \longrightarrow M$ satisfying

$$
g_{1} \cdot f\left(g_{2}, g_{3}\right)-f\left(g_{1} g_{2}, g_{3}\right)+f\left(g_{1}, g_{2} g_{3}\right)-f\left(g_{1}, g_{2}\right)=0
$$

for all $g_{1}, g_{2}, g_{3} \in G$. It classifies the short exact sequences

$$
1 \longrightarrow M \longrightarrow E \longrightarrow G \longrightarrow 1
$$

for a fixed action of G on M.

Extended functoriality

Let M be a G-module and M^{\prime} be a G^{\prime}-module. Suppose that $\alpha: G^{\prime} \longrightarrow G$ be a given group homomorphism. Let $\beta: M \longrightarrow M^{\prime}$ be an abelian group homomorphism such that $\beta(\alpha(g) \cdot m)=g \cdot \beta(m)$ for all $m \in M, g \in G^{\prime}$. This gives a canonical homomorphism

$$
H^{i}(G, M) \longrightarrow H^{i}\left(G^{\prime}, M^{\prime}\right)
$$

Below are some principal examples of extended functoriality
(1) The cohomology groups don't seem to carry a nontrivial G-action, because we compute them by taking G-invariants. This can be reinterpreted in terms of extended functoriality: let $\alpha: G \longrightarrow G$ be the conjugation by some fixed $h, i . e ., g \mapsto h^{-1} g h$ and let $\beta: M \longrightarrow M$ be the map $m \mapsto h \cdot m$. Then the induced homomorphisms $H^{i}(G, M) \longrightarrow H^{i}(G . M)$ are all identity maps.
(2) [Restriction map] Let $H \leq G$ be a subgroup of G and M a G-module. Then M is also an H-module. Let M^{\prime} be the same M but the G-action forgot except H. Then we get the restriction map

$$
\text { Res }: H^{i}(G, M) \longrightarrow H^{i}(H, M)
$$

This can be obtained in another way using the map $M \longrightarrow \operatorname{Ind}_{H}^{G}(M)$ given by $m \mapsto \sum_{i}\left(g_{i} \cdot m\right) \otimes\left[g_{i}^{-1}\right]$. Then we get the following by Shapiro's lemma

$$
H^{i}(G, M) \longrightarrow H^{i}\left(G, \operatorname{Ind}_{H}^{G}(M)\right) \xrightarrow{\sim} H^{i}(H, M)
$$

(3) [Corestriction map] Let M be a G-module and consider the $\operatorname{map}_{\operatorname{Ind}}^{H}{ }_{H}^{G}(M) \longrightarrow$ M given by $m \otimes[g] \mapsto g \cdot m$. This gives, applying Shapiro's lemma, the following so-called corestriction map

$$
\text { Cor : } H^{i}(H, M) \xrightarrow{\sim} H^{i}\left(\operatorname{Ind}_{H}^{G}(M), M\right) \longrightarrow H^{i}(G, M)
$$

(4) The composition Cor \circ Res is given by

$$
m \mapsto \sum_{i}\left(g_{i} \cdot m\right) \otimes\left[g_{i}^{-1}\right] \mapsto \sum_{i} m=[G: H] m
$$

Thus the composition CoroRes : $M \longrightarrow M$ is the multiplication by the index $[G: H]$. Consequence. Let H be the trivial group. Then $H^{i}(H, M)=0$ for all $i>0$. In this case the composition Cor \circ Res is multiplication by $[G: H]=|G|$ map, i.e., $m \mapsto|G| m$. Thus every cohomology group $H^{i}(G, M)$ is annihilated by $|G|$. Therefore M is a torsion module but not necessarily finite. In particular, when M is finitely generated, $H^{i}(G, M)$ are finitely generated and being annihilated by $|G|$, we get that $H^{i}(G, M)$ are all finite.
(5) [Inflation map] Let $H \unlhd G$ be a normal subgroup. Let $\alpha: G \longrightarrow G / H$ be the natural projection and $\beta: M^{\bar{H}} \hookrightarrow M$ be the injection. Clearly G / H acts on M^{H} and hence M^{H} is a G / H-module. Then we get canonical homomorphism, the inflation homomorphism

$$
\text { Inf }: H^{i}\left(G / H, M^{H}\right) \longrightarrow H^{i}(G, M)
$$

Galois Cohomology

Galois cohomology is group cohomology with Galois groups. For this, we need to know about a certain kind of topology on Galois groups and profinite groups.

Profinite groups

A profinite group is a topological group which is Hausdorff and compact, and which admits a basis of neighborhoods of the identity consisting of normal subgroups. More explicitly, a profinite group is a group G plus a collection of subgroups of G of finite index designated as open subgroups, such that the intersection of two open subgroups is open, but the intersection of all of the open subgroups is trivial.

Definition 11 (Profinite group). A Profinite group is a topological group which is the inverse limit of finite groups, each given the discrete topology.

A profinite group is compact and totally disconnected. The converse is also true.
Proposition 5. A compact totally disconnected topological group G is profinite.
Proof. Since G is totally disconnected and compact, the open sets of G form a base of neighbourhoods of 1 , the identity of G. Let U be an open subgroup of G. Consider the left cosets $g U$ for $g \in G$. This is an open cover of G. Since G is compact, there are finitely many $g_{1} U, g_{2} U, \ldots, g_{k} U$ such that $G=\cup g_{j} U$. Then $[G: U]<\infty$. Therefore the conjugates $g U g^{-1}$ for $g \in G$ are finite in number and their intersection V is both
open and normal in G. Thus, we get a base of neighbourhoods of 1 which are normal subgroups of G. Consider the inverse limit

$$
\underset{\leftarrow}{\lim } G / V
$$

taken over the quotients G / V where V runs through the base of normal neighbourhoods of 1 . The map $G \longrightarrow \lim _{\longleftarrow} G / V$ is injective, continuous, and its image is dense; a compactness argument then shows that it is an isomorphism. Hence G is profinite.
The most interesting and important example for us is any Galois group. Let L / K be a Galois extension, finite or infinite, the $\operatorname{Gal}(L / K)$ is a profinite group, in the following way:
By, construction, $\operatorname{Gal}(L / K)$ is the inverse limit of the Galois groups $\operatorname{Gal}\left(L_{j} / K\right)$ for finite Galois extensions $K \subseteq L_{j} \subseteq L$. Since each $\operatorname{Gal}\left(L_{j} / K\right)$ is finite and equipped with discrete topology, we get that $\operatorname{Gal}(L / K)$ is finite. For example

$$
\begin{gathered}
G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})=\lim _{\leftarrow}^{\leftarrow \operatorname{Gal}(K / \mathbb{Q}) \quad \forall K / \mathbb{Q},[K: \mathbb{Q}]<\infty} \\
G_{\mathbb{F}_{q}}=\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)=\lim _{\leftarrow} \operatorname{Gal}\left(\mathbb{F}_{q^{n}} / \mathbb{F}_{q}\right) \cong \lim _{\check{ }} \mathbb{Z} / n \mathbb{Z}=\widehat{\mathbb{Z}}
\end{gathered}
$$

The profinite topology, i.e., the topology on a Galois group induced by the inverse limit is special and is called the Krüll topology. We recall a theorem from the theory of topological groups
Theorem 3. Let G be a topological group and \mathcal{N} be a base of neighbourhoods of 1 . Then the following are true
(a) for all $N_{1}, N_{2} \in \mathcal{N}$, there exists an $N^{\prime} \in \mathcal{N}$ such that $1 \in N^{\prime} \subseteq N_{1} \cap N_{2}$;
(b) for all $N \in \mathcal{N}$, there exists an $N^{\prime} \in \mathcal{N}$ such that $N^{\prime} N^{\prime} \subset \mathcal{N}$;
(c) for all $N \in \mathcal{N}$, there exists an $N^{\prime} \in \mathcal{N}$ such that $N^{\prime} \subset N^{-1}=\left\{n^{-1}: n \in N\right\}$
(d) for all $N \in \mathcal{N}$ and all $g \in G$, there exists an $N^{\prime} \in \mathcal{N}$ such that $N^{\prime} \subset g N g^{-1}$
(e) for all $g \in G$, the set $\{g N: N \in \mathcal{N}\}$ is a base of neighbourhoods of g.

Conversely, if G is a group and \mathcal{N} is a nonempty set of subsets of G satisfying (a), (b), (c) and (d), then there is a (unique) topology on G for which (e) holds.

Proof. Milne, Fields and Galois Theory, proposition 7.2
Let L / K be a Galois extension and $G=\operatorname{Gal}(L / K)$. Let $S \subset L$ be a finite set. The consider the set

$$
G(S):=\{\sigma \in G: \sigma(s)=s \forall s \in S\}
$$

This is a subgroup of G. We claim the following:

Proposition 6. There is a unique structure of a topological group on G for which the sets $G(S)$ form an open neighbourhood base of 1. For this topology, the sets $G(S)$ with $S G$-stable form a neighbourhood base of 1 consisting of open normal subgroups.

Proof. It is easy to see that for two finite subsets S_{1}, S_{2} of $L, G\left(S_{1}\right) \cap G\left(S_{2}\right)=$ $G\left(S_{1} \cup S_{2}\right), S_{1} \cup S_{2}$ is finite. Hence (a) in theorem 27 is true. Also, (b) and (c) are true since $G(S)$ is a subgroup of G. We now show that (d) is true as well. Let S be a finite subset of L. Then $K(S) / K$ is a finite extension. Then there are only finitely many K-homomorphisms $K(S) \longrightarrow L$. Since $\left.\sigma\right|_{K(S)}=\left.\tau\right|_{K(S)}$ implies $\sigma(S)=\tau(S)$, the set $\bar{S}:=\cup_{\sigma \in G} \sigma S$ is finite. Now, $\sigma(\bar{S})=\bar{S}$ for all $\sigma \in G$. Thus $G(\bar{S}) \unlhd G$ and hence $\sigma G(\bar{S}) \sigma^{-1}=G(\bar{S}) \subset G(S)$. Hence by theorem 27 , there exists a unique topology on G such that $\{G(S): S \subset L,|S|<\infty\}$ is a base of neighbourhoods of 1.

Definition 12 (Krüll topology). The topology generated by the base of neighbourhoods of 1, namely $G(S)$ for finite $S \subset L$, is called the Krüll topology on $\operatorname{Gal}(L / K)$.

If L / K is a Galois extension, but not necessarily finite, we make $G=\operatorname{Gal}(L / K)$ into a profinite group by declaring that the open subgroups of G are precisely $\operatorname{Gal}(L / M)$ for all finite subextensions M of L.

Theorem 4 (Generalized Galois correspondence). Let L / K be a Galois extension (not necessarily finite) and let $G=\operatorname{Gal}(L / K)$. There is a 1-1 correspondence between Galois subextensions $L / M / K$ and normal closed subgroups H given by

$$
H \longmapsto \operatorname{Fix}(H) \quad M \longmapsto \operatorname{Gal}(L / M)
$$

Proof. N. Jacobson, Basic Algebra II, Theorem 8.16.

Cohomology of profinite groups

One can do group cohomology for groups which are profinite, not just finite, but one has to be a bit careful: these groups only make sense when you carry along the profinite topology.

Definition 13. If G is profinite, by a G-module we mean a topological abelian group M with a continuous G-action on M. In particular, we say M is discrete if it has the discrete topology; that implies that the stabilizer of any element of M is open, and that M is the union of M^{H} over all open subgroups H of G. Canonical example: $G=\operatorname{Gal}(L / K)$ acting on L^{*}, even if L is not finite.

The category of discrete G-modules has enough injectives, so we can find injective resolutions for M with discrete injective G-modules and define cohomology groups for any discrete G-module. The main point is that we can compute them from their finite quotients.

Proposition 7. Let M be a discrete G-module for a profinite group G. The cohomology groups $H^{i}(G, M)$ are the direct limit of $H^{i}\left(G / H, M^{H}\right)$ for normal subgroups H and the direct limit is taken with respect to the inflation homomorphism

$$
\text { Inf }: H^{i}\left(G / H, M^{H}\right) \longrightarrow H^{i}(G, M)
$$

Proof. Milne, Class Field Theory, Proposition II.4.4.
We have talked about the inflation homomorphism before as an example of extended functoriality. We give a formal definition below.

Definition 14 (Inflation homomorphism). Let $H_{2} \subseteq H_{1} \subseteq G$ be inclusions of subgroups of finite index. Then we have the inflation homomorphism

$$
\text { Inf : } H^{i}\left(G / H_{1}, M^{H_{1}}\right) \longrightarrow H^{i}\left(G / H_{2}, M^{H_{2}}\right)
$$

Via these maps, the groups $H^{i}\left(G / H, M^{H}\right)$ form an inverse system and proposition 17 tells us that $H^{i}(G, M)$ is the direct limit of this system.

Hilbert's theorem 90 and some applications

Theorem 5 (Hilbert's Satz 90). Let L / K be a finite Galois extension of fields with Galois group $G=\operatorname{Gal}(L / K)$. Let L^{\times}be the multiplicative group of nonzero elements of L. Then $H^{1}\left(G, L^{\times}\right)=0$. Moreover, $H^{1}\left(G_{K}, \bar{K}^{\times}\right)=1$, wheher $G_{K}=\operatorname{Gal}(\bar{K} / K)$ is the absolute Galois group of K.

Proof. We have to show that all 1-cocycles are 1-coboundaries. We denote the action of the elements of G on L by x^{g} for $g \in G, x \in L^{\times}$. Also, we assume that G is written multiplicatively. Then

$$
H^{1}\left(G, L^{\times}\right)=\frac{Z^{1}\left(G, L^{\times}\right)}{B^{1}\left(G, L^{\times}\right)}
$$

where

$$
\begin{gathered}
Z^{1}\left(G, L^{\times}\right)=\left\{f: G \longrightarrow L^{\times}: f(g h)=f(g)^{h} f(h) \text { for all } g, h \in G\right\} \\
B^{1}\left(G, L^{\times}\right)=\left\{f: G \longrightarrow L^{\times}: f(g)=x\left(x^{g}\right)^{-1} \forall g \in G \text { for some } x \in L^{\times}\right\}
\end{gathered}
$$

Let $f \in Z^{1}\left(G, L^{\times}\right)$. Then the maps $\varphi_{g}: L^{\times} \longrightarrow L$ given by $x \mapsto x^{g} f(g)$ is an automorphism of L. By linear independence of automorphisms we get that

$$
\sum_{g \in G} \varphi_{g} \not \equiv 0
$$

Then there exists $x \in L$ such that

$$
y=\sum_{g \in G} x^{g} f(g) \neq 0
$$

Now, for any $h \in G$, we get that

$$
y^{h}=\sum_{g \in G} x^{g h} f(g)=\sum_{g \in G} x^{g h} f(g h)(f(h))^{-1}=y(f(h))^{-1}
$$

Then, $f \in B^{1}\left(G, L^{\times}\right)$. This shows that every 1-cocycle is a 1-coboundary and hence $H^{1}\left(G, L^{\times}\right)=0$.
Now, the cohomology group $H^{1}\left(G_{K}, \bar{K}^{\times}\right)$is, by definition, the following direct limit

$$
H^{1}\left(G_{K}, \bar{K}^{\times}\right)=\underset{\longrightarrow}{\lim } H^{1}\left(G_{K} / H,\left(\bar{K}^{\times}\right)^{H}\right)
$$

Where the direct limit is taken through all open normal subgroups H of G and with respect to the inflation homomorphisms. For any such open normal subgroup H, $G_{K} / H \cong \operatorname{Gal}\left(L_{H} / K\right)$ and $\left(\bar{K}^{\times}\right)^{H}=L_{H}$ for some finite extension L_{H} / K. Thus by Hilbert's theorem 90 for finite extensions, we get that $H^{1}\left(G_{K}, \bar{K}^{\times}\right)=1$ since $H^{1}\left(G_{K} / H,\left(\bar{K}^{\times}\right)^{H}\right)=1$ for all open normal subgroups H of G_{K}.

Corollary 3 (The classical version of Hilbert's theorem 90). Let L / K be a finite cyclic extension (i.e., a Galosi extension with cyclic Galois group) and let σ be a generator of the Galois group $G=\operatorname{Gal}(L / K)$. Let $\alpha \in L$ be some element such that $\mathbf{N}_{L / K}(\alpha)=1$. Then there exists $\beta \in L$ such that $\alpha=\beta / \sigma(\beta)$.

Proof. Exercise. Hint: Use the fact that $\mathbf{N}_{L / K}(\alpha)=1 \Longleftrightarrow \alpha \sigma(\alpha) \cdots \sigma^{n-1}(\alpha)=1$, where $n=[L: K]$ and imitate the proof of Theorem 5 .

Corollary 4 (Additive Hilbert's theorem 90). Let L / K be a finite cyclic extension and σ be a generator of the Galois group $\operatorname{Gal}(L / K)$. Let $\alpha \in L$ be such that $\operatorname{Tr}_{L / K}(\alpha)=0$. Then there exists $\beta \in L$ such that $\alpha=\beta-\sigma(\beta)$.
Proof. Exercise. Hint: Use the fact that $\operatorname{Tr}_{L / K}(\alpha)=0 \Longleftrightarrow \sum_{j=0}^{n-1} \sigma^{j}(\alpha)=0$, where $n=[L: K]$. Now, try to define $\beta \in L$ explicitly.

To demonstrate an application, we prove Exercise 1.12. from Silverman's AEC.

Problem.

(a) Let V / K be an affine variety. Prove that

$$
K[V]=\left\{f \in \bar{K}[V]: f^{\sigma}=f \forall \sigma \in G_{K}\right\}
$$

(b) Prove that

$$
\mathbb{P}^{n}(K)=\left\{P \in \mathbb{P}^{n}(\bar{K}): P^{\sigma}=P \forall \sigma \in G_{K}\right\}
$$

(c) Let $\phi: V_{1} \longrightarrow V_{2}$ be a rational map of projective varieties. Prove that ϕ is defined over K if and only if $\phi^{\sigma}=\phi$ for all $\sigma \in G_{K}$.

Solution. Since $K[V]=K[X] / I(V / K)$, any $f \in K[V]$ is represented by a polynomial in $K[X]$. Then it's clear that $f^{\sigma}=f$ for all $\sigma \in G_{K}$. Therefore

$$
K[V] \subset\left\{f \in \bar{K}[V]: f^{\sigma}=f \forall \sigma \in G_{K}\right\}
$$

Let $F \in \bar{K}[X]$ such that $F \equiv f(\bmod I(V))$, where f is some element of $\bar{K}[V]$ fixed by all $\sigma \in G_{K}$. Since $F \in \bar{K}[X], F^{\sigma}$ is not necessarily the same as F. The map $\sigma \mapsto F^{\sigma}-F$ is non-trivial. For any $\sigma, \tau \in G_{K}$, we get that

$$
F^{\sigma \tau}-F=F^{\sigma \tau}-F^{\sigma}+F^{\sigma}-F=\left(F^{\tau}-F\right)^{\sigma}+\left(F^{\sigma}-F\right)
$$

Also, $F^{\sigma} \equiv f^{\sigma}=f \equiv F(\bmod I(V))$. Thus $F^{\sigma}-F \in I(V)$ for all $\sigma \in G_{K}$. This shows that the map $\sigma \mapsto F^{\sigma}-F$ is a 1 -cocycle $G_{K} \longrightarrow I(V)$. Therefore, if we write

$$
F(X)=\sum_{\alpha} a_{\alpha} X^{\alpha}
$$

for $a_{\alpha} \in \bar{K}^{+}$, we get a 1-cocycle $G_{K} \longrightarrow \bar{K}^{+}$and by $B .2 .5 a, H^{1}\left(G_{K}, \bar{K}^{+}\right)=0$, thus they are 1-coboundaries. Thus there exists $G \in I(V)$ such that

$$
\sigma \mapsto F^{\sigma}-F \equiv \sigma \mapsto G^{\sigma}-G
$$

(for all $\sigma \in G_{K}$)
This shows that

$$
(F-G)^{\sigma}-(F-G)=0 \forall \sigma \in G_{K}
$$

Thus $F-G \in K[X]$. This shows that $f \in K[V]$. This completes the proof.
(b) Let

$$
P \in\left\{\mathbb{P}^{n}(\bar{K}): P^{\sigma}=P \forall \sigma \in G_{K}\right\}
$$

and $P=\left[x_{0}: x_{1}: \cdots: x_{n}\right]$ be a homogeneous coordinate for $P \in \mathbb{P}^{n}(\bar{K})$. Since $P^{\sigma}=P$ as homogeneous coordinates, there exists $\lambda_{\sigma} \in \bar{K}^{\times}$such that $x_{i}^{\sigma}=\lambda_{\sigma} x_{i}$ for $i=0,1, \ldots, n$. We claim that $\sigma \mapsto \lambda_{\sigma}$ is a 1-cocycle $G_{K} \longrightarrow \bar{K}^{\times}$. Indeed, for $\sigma, \tau \in$ $G_{K}, x_{i}^{\sigma \tau}=\lambda_{\sigma \tau} x_{i}$. Also, $x_{i}^{\sigma \tau}=\left(x_{i}^{\sigma}\right)^{\tau}=\lambda_{\tau} x_{i}$ and $\left(x_{i}^{\sigma}\right)^{\tau}=\left(\lambda_{\sigma} x_{i}\right)^{\tau}=\lambda_{\sigma}^{\tau} x_{i}^{\tau}=\lambda_{\sigma}^{\tau} \lambda_{\tau} x_{i}$. Since $x_{i} \neq 0$ for at least one $0 \leq i \leq n$, we get that

$$
\lambda_{\sigma \tau}=\lambda_{\sigma}^{\tau} \lambda_{\tau} \quad \forall \sigma, \tau \in G_{K}
$$

By Hilbert's theorem 90, we get that there exists $\alpha \in \bar{K}^{\times}$such that $\lambda_{\sigma}=\alpha^{\sigma} / \alpha$ for all $\sigma \in G_{K}$. Therefore, we get $x_{i}^{\sigma}=\alpha^{\sigma} / \alpha x_{i}$ or $\left(\beta x_{i}\right)^{\sigma}=\beta x_{i}$ for all $\sigma \in G_{K}$. Thus $\alpha x_{i} \in K$ for all $\sigma \in G_{K}$, where $\beta=\alpha^{-1}$. This shows that

$$
P=P^{\sigma}=\left[\beta x_{0}: \beta x_{1}: \cdots: \beta x_{n}\right] \in \mathbb{P}^{n}(K)
$$

Therefore $\left\{\mathbb{P}^{n}(\bar{K}): P^{\sigma}=P \forall \sigma \in G_{K}\right\} \subset \mathbb{P}^{n}(K)$. The other inclusion is clear. This completes the proof.
(c) Let $V_{1}, V_{2} \subset \mathbb{P}^{n}$ be two projective varieties over K and $\phi: V_{1} \longrightarrow V_{2}$ be a rational map. Then there are functions $f_{0}, f_{1}, \ldots, f_{n} \in \bar{K}\left(V_{1}\right)$ such that f_{j} are defined for all points $P \in V_{1}$. If $\phi^{\sigma}=\phi$ for all $\sigma \in G_{K}$, then we get that for any P in V_{1}, we get that

$$
\left[f_{0}^{\sigma}(P): f_{1}^{\sigma}(P): \cdots: f_{n}^{\sigma}(P)\right]=\left[f_{0}(P): f_{1}(P): \cdots: f_{n}(P)\right]
$$

By part (b), there exists $\lambda \in \bar{K}^{\times}$such that

$$
\left(\lambda f_{j}\right)^{\sigma}=\lambda f_{j} \quad \forall \sigma \in G_{K}, 0 \leq j \leq n
$$

Hence by part (a) $\lambda f_{j} \in K\left(V_{1}\right)$. This completes the proof.

References \& Further Reading

[1] The Arithmetic of Elliptic Curves, Joseph H. Silverman
[2] Local Fields, J.-P. Serre
[3] Galois Cohomology, J.-P. Serre
[4] Central Simple Algebras and Galois Cohomology, Gille \& Szamuely
[5] Modular Forms and Galois Cohomolgy, Haruzo Hida
[6] Cohomology of Number Fields, Jürgen Neukirch
[7] Galois Cohomology of Elliptic Curves, Coates \& Sujatha
[8] Galois Cohomology and Class Field Theory, David Harari
[9] An Introduction to Galois Cohomology and its Applications, Grégory Berhuy

