The *p*-adic Cyclotomic Character

Shubhrajit Bhattacharya

shubhrajit@cmi.ac.in

The Galois Representation Reading Group

Introduction

We wish to define a group homomorphism

$$\chi_p: G_{\mathbb{Q}} \longrightarrow \mathbb{Z}_p^*$$

where \mathbb{Z}_p^* is the group of units of the ring \mathbb{Z}_p of *p*-adic integers. The elements of \mathbb{Z}_p can be identified with a Cauchy sequence $\{a_n\}_{n\geq 1}$ with $a_n \in \mathbb{Z}$ and satisfying the following conditions

- 1. $0 \le a_n \le p^n 1 \quad \forall \ n \in \mathbb{N}$
- 2. $a_n \equiv a_{n+1} \pmod{p^n} \quad \forall n \in \mathbb{N}$

In fact, this representation is unique as a consequence of the following theorem

Theorem 1. Every equivalence class a of Cauchy sequence sequences in \mathbb{Q}_p exactly one representative Cauchy sequence $\{a_n\}_{n\geq 1}$ in \mathbb{Q} satisfying the following properties

- 1. $0 \le a_n \le p^n 1 \quad \forall \ n \in \mathbb{N}$
- 2. $a_n \equiv a_{n+1} \pmod{p^n} \quad \forall n \in \mathbb{N}$

Proof. Theorem 2 of §3 of chapter 1 in Neal Koblitz.

Let $\sigma \in G_{\mathbb{Q}}$ and K/\mathbb{Q} be a finite Galois extension. For any $\alpha \in K$, $\sigma(\alpha)$ is a root of the minimal polynomial of α since σ fixes \mathbb{Q} point-wise. Therefore, normality of K/\mathbb{Q} implies that $\sigma(\alpha) \in K$. Hence $\sigma(K) \subseteq K$. Thus σ restricts to K and gives an element $\sigma|_K$ of $\operatorname{Gal}(K/\mathbb{Q})$. Let $C_n = \mathbb{Q}(\zeta_{p^n})$ be the p^n -th cyclotomic extension of \mathbb{Q} , where

$$\zeta_{p^n} = \exp\left\{\frac{2\pi i}{p^n}\right\}$$

for $n \in \mathbb{N}$. Therefore σ restricts to C_n/\mathbb{Q} and gives an element $\sigma_n \coloneqq \sigma|_{C_n}$

$$\operatorname{Gal}(C_n/\mathbb{Q}) = \operatorname{Gal}(\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}) \cong (\mathbb{Z}/p^n\mathbb{Z})^{\times}$$

Since $\sigma_n \in \text{Gal}(C_n/\mathbb{Q})$, $\sigma_n(\zeta_{p^n})$ is also a p^n -th root of unity which is not 1 (σ_n is a field automorphism fixing \mathbb{Q} point-wise, $1 \in \mathbb{Q}$ and $1 \neq \zeta_{p^n}$). Therefore, for each $n \in \mathbb{N}$, we get a $1 \leq z_n \leq p^n - 1$ such that

$$\sigma_n(\zeta_{p^n}) = \zeta_{p^n}^{z_n}$$

Observe that

$$\zeta_{p^{n+1}}^p = \exp\left\{\frac{2\pi i}{p^{n+1}}\right\}^p = \exp\left\{\frac{2p\pi i}{p^{n+1}}\right\} = \zeta_{p^n}$$

Therefore,

$$\zeta_{p^n}^{z_{n+1}} = \zeta_{p^{n+1}}^{pz_{n+1}} = (\sigma_{n+1}(\zeta_{p^{n+1}}))^p = \sigma_{n+1}(\zeta_{p^{n+1}}) = \sigma_{n+1}(\zeta_{p^n})$$

Since $\mathbb{Z}/p^n\mathbb{Z} \hookrightarrow \mathbb{Z}/p^{n+1}\mathbb{Z}, \ \sigma_{n+1}(\zeta_{p^n}) = \sigma_n(\zeta_{p^n})$. Therefore,

$$\zeta_{p^n}^{z_{n+1}} = \sigma_{n+1}(\zeta_{p^n}) = \sigma_n(\zeta_{p^n}) = \zeta_{p^n}^{z_n}$$

Thus $z_n \equiv z_{n+1} \pmod{p^n}$. Therefore, $\{z_n\}_{n\geq 1}$ is a Cauchy sequence and uniquely represents an element of \mathbb{Z}_p . Since $z_1 \neq 0$, $\{z_n\}_{n\geq 1}$ represents an element of \mathbb{Z}_p^* . It can be easily verified that this assignment $\sigma \mapsto \{z_n\}_{n\geq 1}$ is actually a group homomorphism from $G_{\mathbb{Q}}$ to \mathbb{Z}_p^* . Now, \mathbb{Z}_p^* sits inside $\mathbb{Q}_p^{\times} = \mathbb{Q}_p \setminus \{0\}$. Thus we actually have a group homomorphism

$$\chi_p: G_{\mathbb{Q}} \longrightarrow \mathbb{Q}_p^{\times}$$

each element $\boldsymbol{\alpha} \in \mathbb{Q}_p^{\times}$ gives rise to an invertible linear map $\boldsymbol{x} \mapsto \boldsymbol{\alpha} \boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{Q}_p$. Thus, we can identify \mathbb{Q}_p as a 1-dimensional \mathbb{Q}_p vector space and \mathbb{Q}_p^{\times} with $\operatorname{GL}_1(\mathbb{Q}_p)$. Hence we get a 1-dimensional *p*-adic representation of the absolute Galois group of \mathbb{Q}

$$\chi_p: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_1(\mathbb{Q}_p)$$

This map χ_p is known as the *p*-adic cyclotomic character. This is also denoted by $\mathbb{Q}_p(1)$. This (1) in bracket is because there are related representations denoted by $\mathbb{Q}_p(n)$ for all non-zero integers. We will discuss them soon. Before that, we revisit some necessary facts from finite dimensional representations of a group G.

Some necessary facts on finite dimensional representations of a group G

We will mostly study finite dimensional representations of Galois groups (possibly infinite). Infinite Galois groups are topological groups (in fact any Galois group) with the *Krüll topology*.

The dual of a representation

Let V be \mathbb{F} -vector space of dimension $n \in \mathbb{N}$. Let G be a group and let ρ be a representation of G

$$\rho: G \longrightarrow \operatorname{GL}_{\mathbb{F}}(V)$$

We sometimes call that V is a representation of G. In this way of saying, we get that the dual space of V, *i.e.* $V^* = \operatorname{Hom}_{\mathbb{F}}(V, \mathbb{F})$ is also a representation of G. We want to define a group homomorphism

$$\rho^*: G \longrightarrow \operatorname{GL}_{\mathbb{F}}(V^*)$$

There is a natural paring $\langle \cdot, \cdot \rangle : V^* \times V \longrightarrow \mathbb{C}$, given by

$$\langle arphi, oldsymbol{v}
angle \coloneqq arphi(oldsymbol{v}) \quad orall \, arphi \in V^*, oldsymbol{v} \in V$$

We want that ρ and ρ^* preserves this pairing $\langle \cdot, \cdot \rangle$, *i.e.*

$$\langle
ho^*(g)(arphi),
ho(g)(oldsymbol{v})
angle = \langle arphi, oldsymbol{v}
angle$$

for all $g \in G, \varphi \in V^*, \boldsymbol{v} \in V$. For any linear map $A \in \operatorname{GL}_{\mathbb{F}}(V)$, there is dual map $T^* \in \operatorname{GL}_{\mathbb{F}}(V^*)$, defined as follows

$$T^*(\varphi)(\boldsymbol{v}) = \varphi(T\boldsymbol{v}) \quad \forall \, \boldsymbol{v} \in V$$

We define $\rho^* : G \longrightarrow \operatorname{GL}_{\mathbb{F}}(V^*)$ as follows

$$\rho^*(g) \coloneqq (\rho(g^{-1}))^* \quad \forall \ g \in G$$

We first verify that this is indeed a group homomorphism.

Proposition 1. The map $\rho^* : G \longrightarrow \operatorname{GL}_{\mathbb{F}}(V^*)$ is indeed a group homomorphim.

Proof. We use the facts from linear algebra and group theory that for two linear maps $S, T \in \operatorname{GL}_{\mathbb{F}}(V)$, we have $(ST)^* = T^*S^*$ and for any two elements $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$. Let $g, h \in G$. Then we get that

$$\rho^*(gh) = (\rho((gh)^{-1}))^*$$
$$= (\rho(h^{-1}g^{-1}))^* = (\rho(h^{-1})\rho(g^{-1}))^*$$

(since ρ is a group homomorphism)

$$= (\rho(g^{-1}))^* (\rho(h^{-1}))^* = \rho^*(g)\rho^*(h)$$

This completes the proof.

Since V is finite dimensional, we can identify $\operatorname{GL}_{\mathbb{F}}(V) \cong \operatorname{GL}_{n}(\mathbb{F})$ with the space of $n \times n$ invertible matrices, we can also view the elements $\rho(g)$ (similarly) as matrices in $GL_{n}(\mathbb{F})$ by fixing some basis. Let use fix the standard bases $\mathcal{B} = \{\boldsymbol{e}_{1}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\}$ for V (identifying V with \mathbb{F}^{n}) and the corresponding $\mathcal{B}^{*} = \{\boldsymbol{e}_{1}^{*}, \boldsymbol{e}_{1}^{*}, \ldots, \boldsymbol{e}_{n}^{*}\}$ for the dual space V^{*} (identifying it with $\operatorname{Hom}_{\mathbb{F}}(\mathbb{F}^{n}, \mathbb{F})$). Here \boldsymbol{e}_{i}^{*} 's are defined as follows

$$\boldsymbol{e}_i^*(\boldsymbol{e}_j) = \delta_{ij} \quad \forall \ 1 \le i, j \le n$$

What is the relation between the matrices $\rho(g)$ and $\rho^*(g)$ with respect to the bases B, \mathcal{B}^* respectively? Let $A = [a_{ij}]_n$ be the matrix of $\rho(g)$. Then $\rho(g^{-1})$ has the matrix of $\rho(g)^{-1}$, *i.e.* A^{-1} . By definition, we get that $\rho^*(g)$ is nothing but the linear map $(\rho(g^{-1}))^*$. We prove that the matrix of $\rho^*(g)$ with respect to \mathcal{B}^* is $(A^{-1})^T$ by the following lemma.

Lemma 1. Let M be the matrix representation of a linear map $T : \mathbb{F}^n \longrightarrow \mathbb{F}^n$ with respect to \mathcal{B} . Then the the matrix representation of the dual map $T^* : \operatorname{Hom}_{\mathbb{F}}(\mathbb{F}^n, \mathbb{F}) \longrightarrow \operatorname{Hom}_{\mathbb{F}}(\mathbb{F}^n, \mathbb{F})$ with respect to \mathcal{B}^* is M^T .

Proof. Let $N = [N_{ij}]$ be the matrix representation of T^* and $M = [M_{ij}]$ be that of T with respect to $\mathcal{B}^*, \mathcal{B}$ respectively. Then

$$T^*(\boldsymbol{e}_i^*) = \sum_{k=1}^n \boldsymbol{e}_k^* N_{kj}$$
$$\implies T^*(\boldsymbol{e}_i^*)(\boldsymbol{e}_j) = \sum_{k=1}^n \boldsymbol{e}_k^*(\boldsymbol{e}_j) N_{kj} = N_{ij}$$

-	-	-
L		1

Again,

$$T^*(\boldsymbol{e}_i^*)(\boldsymbol{e}_j) = \boldsymbol{e}_i^*(T(\boldsymbol{e}_j))$$
$$= \boldsymbol{e}_i^*\left(\sum_{\ell=1}^n M_{j\ell}\boldsymbol{e}_\ell\right) = M_{ji}$$

Therefore $M_{ij} = N_{ji}$ and hence the proof.

Tensor product of two representations

First we recall that what is the vector space $V \otimes_{\mathbb{F}} W$ for two \mathbb{F} -vector spaces V, W.

Definition 1 (Tensor product). Let \mathbb{F} be a field and V, W be two \mathbb{F} -vector spaces. Then the tensor product $V \otimes_{\mathbb{F}} W$ is an \mathbb{F} -vector space together with a universal bilinear map

$$(u,v) \mapsto u \otimes v \quad \forall \ (u,v) \in V \times W$$

such that for any bilinear map $\beta: V \times W \longrightarrow U$, where any \mathbb{F} -vector space U, there is a unique linear map $T: V \otimes_{\mathbb{F}} W \longrightarrow U$ such that the following diagram commutes

Two representations (V, ρ) and (W, ρ') of a group G induces a representation on the vector space $V \otimes_{\mathbb{F}} W$, which is given the following natural action of G on $V \otimes_{\mathbb{F}} W$

$$g(u\otimes v)\coloneqq gu\otimes gv$$

This representation is the tensor product of the two representation V, W. By induction, we can define the tensor product of m F-vector spaces V_1, V_2, \ldots, V_m

$$V_1 \otimes V_2 \otimes \cdots \otimes V_m$$

and hence any *m* representations of *G* (in the same base field \mathbb{F}) induces a representation on $V_1 \otimes V_2 \otimes \cdots \otimes V_m$. For any representation *V*, we denote the *n*-fold tensor product $V \otimes V \otimes \cdots \otimes V$ by $V^{\otimes n}$.

We define $\mathbb{Q}_p(-1)$ to be the *dual representation* of $\mathbb{Q}_p(1)$. Then for any $m \ge 1$, we define $\mathbb{Q}_p(m)$ to be the power $\mathbb{Q}_p(1)^{\otimes m}$ and $\mathbb{Q}_p(-m)$ to be the power $Q_p(-1)^{\otimes m}$.

Definition 2 (Tate twist). Let V be a finite dimensional vector space over \mathbb{Q}_p and $\rho : G_{\mathbb{Q}} \longrightarrow \operatorname{GL}_{\mathbb{Q}_p}(V)$ be any p-adic representation of $G_{\mathbb{Q}}$. Then the m^{th} Tate twist V(m) of V is defined as the following representation

$$V(m) \coloneqq V \otimes \mathbb{Q}_p(m) \qquad \forall \ m \in \mathbb{Z}$$

Algebraicity and purity-the notion of motivic weight

Let K be a number field and V be a p-adic representation of $G_K = \operatorname{Gal}(\overline{K}/K)$, the absolute Galois group of K, which is unramified at all but finitely many places of K. Let Σ denote that finite set of places outside which V is unramified.

Definition 3 (Algebraicity). Let Σ' be a finite set of places of K containing Σ . A *p*-adic representation V of G_K is said to be algebraic (or Σ' -algebraic, to be precise) if for each place $v \notin \Sigma'$, the characteristic polynomial of Frob_v (Frob_v is the Frobenius element of G_K at v and it acts on V) has coefficients in $\overline{\mathbb{Q}}$.

Definition 4 (**Purity**). Let w be an integer. A p-adic representation V of G_K is said to be pure of weight w, if there exists a finite set Σ' of places of K containing Σ , such that V is Σ' -algebraic and all the roots of the characteristic polynomial of Frob_v has complex absolute value $q_v^{-w/2}$ for all $v \notin \Sigma'$, where q_v is the cardinality of the finite residue field of K_v , i.e. the completion of K at v.

This w is called the *motivic weight* of V. For example, we show that $\mathbb{Q}_p(1)$ is algebraic and pure of weight -2.

Proposition 2. The p-adic cyclotomic character $\mathbb{Q}_p(1)$ is algebraic and pure of weight -2.

Proof. The *p*-adic cyclotomic character is an 1-dimensional *p*-adic representation of $G_{\mathbb{Q}}$ given by the map described earlier

$$\chi_p: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_1(\mathbb{Q}_p)$$

In fact, for any $\sigma \in G_{\mathbb{Q}}, \chi_p(\sigma) \in \mathbb{Z}_p^*$. Let $\ell \neq p$ be a prime. We recall that χ_p maps $\sigma \in G_{\mathbb{Q}}$ to a unique representative $\{z_n\}_{n\geq 1}$ satisfying the properties

1.
$$\sigma(\zeta_{p^n}) = \zeta_{p^n}^{z_n}$$

2.
$$z_n \equiv z_{n+1} \pmod{p^n}$$

We first show that for any prime $\ell \neq p$, $\mathbb{Q}_p(1)$ is unramified at ℓ , *i.e.*, the inertia subgroup I_ℓ of G_K at the prime ℓ acts trivially. The map χ_p factors as follows, for each $n \in \mathbb{N}$

This restriction map $\sigma \mapsto \sigma|_{\mathbb{Q}(\zeta_{v^n})}$ takes I_{ℓ} to the inertia subgroup

$$I_{(\ell_n|\ell)} \leq \operatorname{Gal}(\mathbb{Q}(\zeta_{p^n})/\mathbb{Q})$$

where ℓ_n is some prime of $\mathbb{Q}(\zeta_{p^n})$ lying above ℓ . We know that $\mathcal{O}_K = \mathbb{Z}[\zeta_m]$ for $K = \mathbb{Q}(\zeta_m)$ (cf. Marcus §2 *theorem 10*). Therefore

$$\operatorname{disc}(\mathbb{Z}[\zeta_m]) = \operatorname{disc}(\zeta_m) = \frac{(-1)^{\frac{\varphi(m)}{2}} m^{\varphi(m)}}{\prod_{p|m} p^{\frac{\varphi(m)}{p-1}}}$$

When $m = p^n$, we have that $\ell \nmid \operatorname{disc}(\mathbb{Z}[\zeta_m])$. By theorem 24, §3, Number Fields, ℓ is unramified and hence $I_{(\ell_n|\ell)}$ is trivial. Thus I_ℓ acts trivially on \mathbb{Q}_p (since I_ℓ is inverse limit of I_{ℓ_n}). Therefore χ_p is unramified outside $\{p\}$. We get that, for all n,

$$\operatorname{Frob}_{\ell}|_{\mathbb{Q}(\zeta_{p^n})}(x) \equiv x^{\ell} \pmod{\ell_n}$$

By uniqueness of the Frobenius element, $\operatorname{Frob}_{\ell|\mathbb{Q}(\zeta_{p^n})}$ is same as $x \mapsto x^{\ell}$. Therefore $z_n = \ell$ for all sufficiently large n. Thus the sequence $\{z_n\}_{n\geq 1}$ converges to the image of $\ell \in \mathbb{Z}$ in \mathbb{Q}_p . Since $\ell \not\equiv 0 \pmod{p}$, we get that $z_1 \neq 0$. This shows that $\chi_p(\operatorname{Frob}_{\ell}) = \ell$, $\ell \in \mathbb{Z}_p^*$ and hence represents the 1×1 matrix $[\ell]$ in $\operatorname{GL}_1(\mathbb{Q}_p)$. This shows that the characteristic polynomial of $\operatorname{Frob}_{\ell}$ is $\det(TI_1 - \chi_p(\operatorname{Frob}_{\ell})) = T - \ell$. Therefore we can take $\Sigma' = \Sigma = \{p\}$ and the characteristic polynomial of $\operatorname{Frob}_{\ell}$ has coefficients in $\overline{\mathbb{Q}}$ and its only root has complex absolute value $\ell = \ell^{-\frac{-2}{2}}$ for all $\ell \neq p$ and also the cardinality of the residue field of \mathbb{Q} at ℓ , *i.e.*, $\mathbb{F}_{\ell} = \mathbb{Z}/\ell\mathbb{Z}$, is ℓ . Hence $\mathbb{Q}_p(1)$ is algebraic and pure of weight -2.

References

- [1] Jean-Marc Fontaine & Yi Ouyang, Theory of p-adic Galois Representations
- [2] Jürgen Neukirch, Algebraic Number Theory
- [3] Neal Koblitz, *p-adic Numbers*, *p-adic Analysis*, and Zeta-Functions
- [4] Willian Fultom & Joe Harris, Representation Theory: A First Course
- [5] Daniel A. Marcus, Number Fields, Second Edition (2018)