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Introduction
We wish to define a group homomorphism

χp : GQ −→ Z∗p

where Z∗p is the group of units of the ring Zp of p-adic integers. The elements of Zp
can be identified with a Cauchy sequence {an}n≥1 with an ∈ Z and satisfying the
following conditions

1. 0 ≤ an ≤ pn − 1 ∀ n ∈ N

2. an ≡ an+1 (mod pn) ∀ n ∈ N

In fact, this representation is unique as a consequence of the following theorem

Theorem 1. Every equivalence class a of Cauchy sequence sequences in Qp exactly
one representative Cauchy sequence {an}n≥1 in Q satisfying the following properties

1. 0 ≤ an ≤ pn − 1 ∀ n ∈ N

2. an ≡ an+1 (mod pn) ∀ n ∈ N

Proof. Theorem 2 of §3 of chapter 1 in Neal Koblitz.

Let σ ∈ GQ and K/Q be a finite Galois extension. For any α ∈ K, σ(α) is a root
of the minimal polynomial of α since σ fixes Q point-wise. Therefore, normality of
K/Q implies that σ(α) ∈ K. Hence σ(K) ⊆ K. Thus σ restricts to K and gives an
element σ|K of Gal(K/Q). Let Cn = Q(ζpn) be the pn-th cyclotomic extension of Q,
where

ζpn = exp

{
2πi

pn

}
for n ∈ N. Therefore σ restricts to Cn/Q and gives an element σn := σ|Cn

Gal(Cn/Q) = Gal(Q(ζpn)/Q) ∼= (Z/pnZ)×

Since σn ∈ Gal(Cn/Q), σn(ζpn) is also a pn-th root of unity which is not 1 (σn is a
field automorphism fixing Q point-wise, 1 ∈ Q and 1 6= ζpn). Therefore, for each
n ∈ N, we get a 1 ≤ zn ≤ pn − 1 such that

σn(ζpn) = ζznpn



Observe that

ζppn+1 = exp

{
2πi

pn+1

}p
= exp

{
2pπi

pn+1

}
= ζpn

Therefore,

ζ
zn+1

pn = ζ
pzn+1

pn+1 = (σn+1(ζpn+1))p = σn+1(ζ
p
pn+1) = σn+1(ζpn)

Since Z/pnZ ↪→ Z/pn+1Z, σn+1(ζpn) = σn(ζpn). Therefore,

ζ
zn+1

pn = σn+1(ζpn) = σn(ζpn) = ζznpn

Thus zn ≡ zn+1 (mod pn). Therefore, {zn}n≥1 is a Cauchy sequence and uniquely
represents an element of Zp. Since z1 6= 0, {zn}n≥1 represents an element of Z∗p. It can
be easily verified that this assignment σ 7→ {zn}n≥1 is actually a group homomorphism
from GQ to Z∗p. Now, Z∗p sits inside Q×p = Qp \ {0}. Thus we actually have a group
homomorphism

χp : GQ −→ Q×p

each element α ∈ Q×p gives rise to an invertible linear map x 7→ αx for all x ∈ Qp.
Thus, we can identify Qp as a 1-dimensional Qp vector space and Q×p with GL1(Qp).
Hence we get a 1-dimensional p-adic representation of the absolute Galois group of Q

χp : GQ −→ GL1(Qp)

This map χp is known as the p-adic cyclotomic character. This is also denoted by
Qp(1). This (1) in bracket is because there are related representations denoted by
Qp(n) for all non-zero integers. We will discuss them soon. Before that, we revisit
some necessary facts from finite dimensional representations of a group G.

Some necessary facts on finite dimensional
representations of a group G

We will mostly study finite dimensional representations of Galois groups (possibly
infinite). Infinite Galois groups are topological groups (in fact any Galois group)
with the Krüll topology.

The dual of a representation

Let V be F-vector space of dimension n ∈ N. Let G be a group and let ρ be a
representation of G

ρ : G −→ GLF(V )

We sometimes call that V is a representation of G. In this way of saying, we get that
the dual space of V , i.e. V ∗ = HomF(V,F) is also a representation of G. We want to
define a group homomorphism

ρ∗ : G −→ GLF(V ∗)

There is a natural paring 〈· , ·〉 : V ∗ × V −→ C, given by

〈ϕ,v〉 := ϕ(v) ∀ ϕ ∈ V ∗,v ∈ V
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We want that ρ and ρ∗ preserves this pairing 〈· , ·〉, i.e.

〈ρ∗(g)(ϕ), ρ(g)(v)〉 = 〈ϕ,v〉

for all g ∈ G,ϕ ∈ V ∗,v ∈ V . For any linear map A ∈ GLF(V ), there is dual map
T ∗ ∈ GLF(V ∗), defined as follows

T ∗(ϕ)(v) = ϕ(Tv) ∀ v ∈ V

We define ρ∗ : G −→ GLF(V ∗) as follows

ρ∗(g) := (ρ(g−1))∗ ∀ g ∈ G

We first verify that this is indeed a group homomorphism.

Proposition 1. The map ρ∗ : G −→ GLF(V ∗) is indeed a group homomorphim.

Proof. We use the facts from linear algebra and group theory that for two linear
maps S, T ∈ GLF(V ), we have (ST )∗ = T ∗S∗ and for any two elements a, b ∈ G,
(ab)−1 = b−1a−1. Let g, h ∈ G. Then we get that

ρ∗(gh) = (ρ((gh)−1))∗

= (ρ(h−1g−1))∗ = (ρ(h−1)ρ(g−1))∗

(since ρ is a group homomorphism)
= (ρ(g−1))∗(ρ(h−1))∗ = ρ∗(g)ρ∗(h)

This completes the proof.

Since V is finite dimensional, we can identify GLF(V ) ∼= GLn(F) with the space of
n× n invertible matrices, we can also view the elements ρ(g) (similarly) as matrices
in GLn(F) by fixing some basis. Let use fix the standard bases B = {e1, e1, . . . , en}
for V (identifying V with Fn) and the corresponding B∗ = {e∗1, e∗1, . . . , e∗n} for the
dual space V ∗ (identifying it with HomF(Fn,F)). Here e∗i ’s are defined as follows

e∗i (ej) = δij ∀ 1 ≤ i, j ≤ n

What is the relation between the matrices ρ(g) and ρ∗(g) with respect to the bases
B,B∗ respectively? Let A = [aij]n be the matrix of ρ(g). Then ρ(g−1) has the matrix
of ρ(g)−1, i.e. A−1. By definition, we get that ρ∗(g) is nothing but the linear map
(ρ(g−1))∗. We prove that the matrix of ρ∗(g) with respect to B∗ is (A−1)T by the
following lemma.

Lemma 1. LetM be the matrix representation of a linear map T : Fn −→ Fn with re-
spect to B. Then the the matrix representation of the dual map T ∗ : HomF(Fn,F) −→
HomF(Fn,F) with respect to B∗ is MT .

Proof. Let N = [Nij] be the matrix representation of T ∗ and M = [Mij] be that of T
with respect to B∗,B respectively. Then

T ∗(e∗i ) =
n∑
k=1

e∗kNkj

=⇒ T ∗(e∗i )(ej) =
n∑
k=1

e∗k(ej)Nkj = Nij
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Again,

T ∗(e∗i )(ej) = e∗i (T (ej))

= e∗i

(
n∑
`=1

Mj`e`

)
= Mji

Therefore Mij = Nji and hence the proof.

Tensor product of two representations

First we recall that what is the vector space V ⊗F W for two F-vector spaces V,W .

Definition 1 (Tensor product). Let F be a field and V,W be two F-vector spaces.
Then the tensor product V ⊗FW is an F-vector space together with a universal bilinear
map

(u, v) 7→ u⊗ v ∀ (u, v) ∈ V ×W

such that for any bilinear map β : V ×W −→ U , where any F-vector space U , there
is a unique linear map T : V ⊗F W −→ U such that the following diagram commutes

V ×W V ⊗F W

U

(u,v) 7→u⊗v

β
T

Figure 1

Two representations (V, ρ) and (W, ρ′) of a group G induces a representation on the
vector space V ⊗F W , which is given the following natural action of G on V ⊗F W

g(u⊗ v) := gu⊗ gv

This representation is the tensor product of the two representation V,W . By induc-
tion, we can define the tensor product of m F-vector spaces V1, V2, . . . , Vm

V1 ⊗ V2 ⊗ · · · ⊗ Vm

and hence any m representations of G (in the same base field F) induces a represen-
tation on V1 ⊗ V2 ⊗ · · · ⊗ Vm. For any representation V , we denote the n-fold tensor
product V ⊗ V ⊗ · · · ⊗ V by V ⊗n.

We define Qp(−1) to be the dual representation of Qp(1). Then for any m ≥ 1, we
define Qp(m) to be the power Qp(1)⊗m and Qp(−m) to be the power Qp(−1)⊗m.

Definition 2 (Tate twist). Let V be a finite dimensional vector space over Qp and
ρ : GQ −→ GLQp(V ) be any p-adic representation of GQ. Then the mth Tate twist
V (m) of V is defined as the following representation

V (m) := V ⊗Qp(m) ∀ m ∈ Z
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Algebraicity and purity-the notion of motivic weight

Let K be a number field and V be a p-adic representation of GK = Gal(K/K), the
absolute Galois group of K, which is unramified at all but finitely many places of K.
Let Σ denote that finite set of places outside which V is unramified.

Definition 3 (Algebraicity). Let Σ′ be a finite set of places of K containing Σ. A
p-adic representation V of GK is said to be algebraic (or Σ′-algebraic, to be precise) if
for each place v /∈ Σ′, the characteristic polynomial of Frobv (Frobv is the Frobenius
element of GK at v and it acts on V ) has coefficients in Q.

Definition 4 (Purity). Let w be an integer. A p-adic representation V of GK is
said to be pure of weight w, if there exists a finite set Σ′ of places of K containing
Σ, such that V is Σ′-algebraic and all the roots of the characteristic polynomial of
Frobv has complex absolute value q−w/2v for all v /∈ Σ′, where qv is the cardinality of
the finite residue field of Kv, i.e. the completion of K at v.

This w is called the motivic weight of V . For example, we show that Qp(1) is algebraic
and pure of weight −2.

Proposition 2. The p-adic cyclotomic character Qp(1) is algebraic and pure of weight
−2.

Proof. The p-adic cyclotomic character is an 1-dimensional p-adic representation of
GQ given by the map described earlier

χp : GQ −→ GL1(Qp)

In fact, for any σ ∈ GQ, χp(σ) ∈ Z∗p. Let ` 6= p be a prime. We recall that χp maps
σ ∈ GQ to a unique representative {zn}n≥1 satisfying the properties

1. σ(ζpn) = ζznpn

2. zn ≡ zn+1 (mod pn)

We first show that for any prime ` 6= p, Qp(1) is unramified at `, i.e., the inertia
subgroup I` of GK at the prime ` acts trivially. The map χp factors as follows, for
each n ∈ N

GQ GL1(Qp)

Gal(Q(ζpn)/Q)

χp

σ 7→ σ|Q(ζpn )
χ′p

Figure 4

This restriction map σ 7−→ σ|Q(ζpn ) takes I` to the inertia subgroup

I(`n|`) ≤ Gal(Q(ζpn)/Q)

where `n is some prime of Q(ζpn) lying above `. We know that OK = Z[ζm] for
K = Q(ζm) (cf. Marcus §2 theorem 10 ). Therefore

disc(Z[ζm]) = disc(ζm) =
(−1)

ϕ(m)
2 mϕ(m)∏

p|m p
ϕ(m)
p−1
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When m = pn, we have that ` - disc(Z[ζm]). By theorem 24, §3, Number Fields, ` is
unramified and hence I(`n|`) is trivial. Thus I` acts trivially on Qp (since I` is inverse
limit of I`n). Therefore χp is unramified outside {p}. We get that, for all n,

Frob`|Q(ζpn )(x) ≡ x` (mod `n)

By uniqueness of the Frobenius element, Frob`|Q(ζpn ) is same as x 7→ x`. Therefore
zn = ` for all sufficiently large n. Thus the sequence {zn}n≥1 converges to the image of
` ∈ Z in Qp. Since ` 6≡ 0 (mod p), we get that z1 6= 0. This shows that χp(Frob`) = `,
` ∈ Z∗p and hence represents the 1 × 1 matrix [`] in GL1(Qp). This shows that the
characteristic polynomial of Frob` is det(TI1 − χp(Frob`)) = T − `. Therefore we
can take Σ′ = Σ = {p} and the characteristic polynomial of Frob` has coefficients
in Q and its only root has complex absolute value ` = `−

−2
2 for all ` 6= p and also

the cardinality of the residue field of Q at `, i.e., F` = Z/`Z, is `. Hence Qp(1) is
algebraic and pure of weight −2.
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