# The $\boldsymbol{p}$-adic Cyclotomic Character 

Shubhrajit Bhattacharya<br>shubhrajit@cmi.ac.in

## The Galois Representation Reading Group

## Introduction

We wish to define a group homomorphism

$$
\chi_{p}: G_{\mathbb{Q}} \longrightarrow \mathbb{Z}_{p}^{*}
$$

where $\mathbb{Z}_{p}^{*}$ is the group of units of the ring $\mathbb{Z}_{p}$ of $p$-adic integers. The elements of $\mathbb{Z}_{p}$ can be identified with a Cauchy sequence $\left\{a_{n}\right\}_{n \geq 1}$ with $a_{n} \in \mathbb{Z}$ and satisfying the following conditions

1. $0 \leq a_{n} \leq p^{n}-1 \quad \forall n \in \mathbb{N}$
2. $a_{n} \equiv a_{n+1}\left(\bmod p^{n}\right) \quad \forall n \in \mathbb{N}$

In fact, this representation is unique as a consequence of the following theorem
Theorem 1. Every equivalence class $\boldsymbol{a}$ of Cauchy sequence sequences in $\mathbb{Q}_{p}$ exactly one representative Cauchy sequence $\left\{a_{n}\right\}_{n \geq 1}$ in $\mathbb{Q}$ satisfying the following properties

1. $0 \leq a_{n} \leq p^{n}-1 \quad \forall n \in \mathbb{N}$
2. $a_{n} \equiv a_{n+1}\left(\bmod p^{n}\right) \quad \forall n \in \mathbb{N}$

Proof. Theorem 2 of $\S 3$ of chapter 1 in Neal Koblitz.
Let $\sigma \in G_{\mathbb{Q}}$ and $K / \mathbb{Q}$ be a finite Galois extension. For any $\alpha \in K, \sigma(\alpha)$ is a root of the minimal polynomial of $\alpha$ since $\sigma$ fixes $\mathbb{Q}$ point-wise. Therefore, normality of $K / \mathbb{Q}$ implies that $\sigma(\alpha) \in K$. Hence $\sigma(K) \subseteq K$. Thus $\sigma$ restricts to $K$ and gives an element $\left.\sigma\right|_{K}$ of $\operatorname{Gal}(K / \mathbb{Q})$. Let $C_{n}=\mathbb{Q}\left(\zeta_{p^{n}}\right)$ be the $p^{n}$-th cyclotomic extension of $\mathbb{Q}$, where

$$
\zeta_{p^{n}}=\exp \left\{\frac{2 \pi i}{p^{n}}\right\}
$$

for $n \in \mathbb{N}$. Therefore $\sigma$ restricts to $C_{n} / \mathbb{Q}$ and gives an element $\sigma_{n}:=\left.\sigma\right|_{C_{n}}$

$$
\operatorname{Gal}\left(C_{n} / \mathbb{Q}\right)=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p^{n}}\right) / \mathbb{Q}\right) \cong\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}
$$

Since $\sigma_{n} \in \operatorname{Gal}\left(C_{n} / \mathbb{Q}\right), \sigma_{n}\left(\zeta_{p^{n}}\right)$ is also a $p^{n}$-th root of unity which is not $1\left(\sigma_{n}\right.$ is a field automorphism fixing $\mathbb{Q}$ point-wise, $1 \in \mathbb{Q}$ and $1 \neq \zeta_{p^{n}}$ ). Therefore, for each $n \in \mathbb{N}$, we get a $1 \leq z_{n} \leq p^{n}-1$ such that

$$
\sigma_{n}\left(\zeta_{p^{n}}\right)=\zeta_{p^{n}}^{z_{n}}
$$

Observe that

$$
\zeta_{p^{n+1}}^{p}=\exp \left\{\frac{2 \pi i}{p^{n+1}}\right\}^{p}=\exp \left\{\frac{2 p \pi i}{p^{n+1}}\right\}=\zeta_{p^{n}}
$$

Therefore,

$$
\zeta_{p^{n}}^{z_{n+1}}=\zeta_{p^{n+1}}^{p z_{n+1}}=\left(\sigma_{n+1}\left(\zeta_{p^{n+1}}\right)\right)^{p}=\sigma_{n+1}\left(\zeta_{p^{n+1}}^{p}\right)=\sigma_{n+1}\left(\zeta_{p^{n}}\right)
$$

Since $\mathbb{Z} / p^{n} \mathbb{Z} \hookrightarrow \mathbb{Z} / p^{n+1} \mathbb{Z}, \sigma_{n+1}\left(\zeta_{p^{n}}\right)=\sigma_{n}\left(\zeta_{p^{n}}\right)$. Therefore,

$$
\zeta_{p^{n}}^{z_{n+1}}=\sigma_{n+1}\left(\zeta_{p^{n}}\right)=\sigma_{n}\left(\zeta_{p^{n}}\right)=\zeta_{p^{n}}^{z_{n}}
$$

Thus $z_{n} \equiv z_{n+1}\left(\bmod p^{n}\right)$. Therefore, $\left\{z_{n}\right\}_{n \geq 1}$ is a Cauchy sequence and uniquely represents an element of $\mathbb{Z}_{p}$. Since $z_{1} \neq 0,\left\{z_{n}\right\}_{n \geq 1}$ represents an element of $\mathbb{Z}_{p}^{*}$. It can be easily verified that this assignment $\sigma \mapsto\left\{z_{n}\right\}_{n \geq 1}$ is actually a group homomorphism from $G_{\mathbb{Q}}$ to $\mathbb{Z}_{p}^{*}$. Now, $\mathbb{Z}_{p}^{*}$ sits inside $\mathbb{Q}_{p}^{\times}=\mathbb{Q}_{p} \backslash\{0\}$. Thus we actually have a group homomorphism

$$
\chi_{p}: G_{\mathbb{Q}} \longrightarrow \mathbb{Q}_{p}^{\times}
$$

each element $\boldsymbol{\alpha} \in \mathbb{Q}_{p}^{\times}$gives rise to an invertible linear map $\boldsymbol{x} \mapsto \boldsymbol{\alpha} \boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{Q}_{p}$. Thus, we can identify $\mathbb{Q}_{p}$ as a 1-dimensional $\mathbb{Q}_{p}$ vector space and $\mathbb{Q}_{p}^{\times}$with $\mathrm{GL}_{1}\left(\mathbb{Q}_{p}\right)$. Hence we get a 1-dimensional $p$-adic representation of the absolute Galois group of $\mathbb{Q}$

$$
\chi_{p}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{1}\left(\mathbb{Q}_{p}\right)
$$

This map $\chi_{p}$ is known as the $p$-adic cyclotomic character. This is also denoted by $\mathbb{Q}_{p}(1)$. This (1) in bracket is because there are related representations denoted by $\mathbb{Q}_{p}(n)$ for all non-zero integers. We will discuss them soon. Before that, we revisit some necessary facts from finite dimensional representations of a group $G$.

## Some necessary facts on finite dimensional representations of a group G

We will mostly study finite dimensional representations of Galois groups (possibly infinite). Infinite Galois groups are topological groups (in fact any Galois group) with the Krüll topology.

## The dual of a representation

Let $V$ be $\mathbb{F}$-vector space of dimension $n \in \mathbb{N}$. Let $G$ be a group and let $\rho$ be a representation of $G$

$$
\rho: G \longrightarrow \mathrm{GL}_{\mathbb{F}}(V)
$$

We sometimes call that $V$ is a representation of $G$. In this way of saying, we get that the dual space of $V$, i.e. $V^{*}=\operatorname{Hom}_{\mathbb{F}}(V, \mathbb{F})$ is also a representation of $G$. We want to define a group homomorphism

$$
\rho^{*}: G \longrightarrow \mathrm{GL}_{\mathbb{F}}\left(V^{*}\right)
$$

There is a natural paring $\langle\cdot, \cdot\rangle: V^{*} \times V \longrightarrow \mathbb{C}$, given by

$$
\langle\varphi, \boldsymbol{v}\rangle:=\varphi(\boldsymbol{v}) \quad \forall \varphi \in V^{*}, \boldsymbol{v} \in V
$$

We want that $\rho$ and $\rho^{*}$ preserves this pairing $\langle\cdot, \cdot\rangle$, i.e.

$$
\left\langle\rho^{*}(g)(\varphi), \rho(g)(\boldsymbol{v})\right\rangle=\langle\varphi, \boldsymbol{v}\rangle
$$

for all $g \in G, \varphi \in V^{*}, \boldsymbol{v} \in V$. For any linear map $A \in \mathrm{GL}_{\mathbb{F}}(V)$, there is dual map $T^{*} \in \mathrm{GL}_{\mathbb{F}}\left(V^{*}\right)$, defined as follows

$$
T^{*}(\varphi)(\boldsymbol{v})=\varphi(T \boldsymbol{v}) \quad \forall \boldsymbol{v} \in V
$$

We define $\rho^{*}: G \longrightarrow \mathrm{GL}_{\mathbb{F}}\left(V^{*}\right)$ as follows

$$
\rho^{*}(g):=\left(\rho\left(g^{-1}\right)\right)^{*} \quad \forall g \in G
$$

We first verify that this is indeed a group homomorphism.
Proposition 1. The map $\rho^{*}: G \longrightarrow \mathrm{GL}_{\mathbb{F}}\left(V^{*}\right)$ is indeed a group homomorphim.
Proof. We use the facts from linear algebra and group theory that for two linear maps $S, T \in \mathrm{GL}_{\mathbb{F}}(V)$, we have $(S T)^{*}=T^{*} S^{*}$ and for any two elements $a, b \in G$, $(a b)^{-1}=b^{-1} a^{-1}$. Let $g, h \in G$. Then we get that

$$
\begin{aligned}
& \quad \rho^{*}(g h)=\left(\rho\left((g h)^{-1}\right)\right)^{*} \\
& =\left(\rho\left(h^{-1} g^{-1}\right)\right)^{*}=\left(\rho\left(h^{-1}\right) \rho\left(g^{-1}\right)\right)^{*} \\
& \quad \quad \quad \begin{array}{l}
\text { since } \rho \text { is a group homomorphism) } \\
= \\
\left(\rho\left(g^{-1}\right)\right)^{*}\left(\rho\left(h^{-1}\right)\right)^{*}=\rho^{*}(g) \rho^{*}(h)
\end{array}
\end{aligned}
$$

This completes the proof.
Since $V$ is finite dimensional, we can identify $\mathrm{GL}_{\mathbb{F}}(V) \cong \mathrm{GL}_{n}(\mathbb{F})$ with the space of $n \times n$ invertible matrices, we can also view the elements $\rho(g)$ (similarly) as matrices in $G L_{n}(\mathbb{F})$ by fixing some basis. Let use fix the standard bases $\mathcal{B}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ for $V$ (identifying $V$ with $\mathbb{F}^{n}$ ) and the corresponding $\mathcal{B}^{*}=\left\{\boldsymbol{e}_{1}^{*}, \boldsymbol{e}_{1}^{*}, \ldots, \boldsymbol{e}_{n}^{*}\right\}$ for the dual space $V^{*}$ (identifying it with $\operatorname{Hom}_{\mathbb{F}}\left(\mathbb{F}^{n}, \mathbb{F}\right)$ ). Here $\boldsymbol{e}_{i}^{*}$ 's are defined as follows

$$
\boldsymbol{e}_{i}^{*}\left(\boldsymbol{e}_{j}\right)=\delta_{i j} \quad \forall 1 \leq i, j \leq n
$$

What is the relation between the matrices $\rho(g)$ and $\rho^{*}(g)$ with respect to the bases $\mathrm{B}, \mathcal{B}^{*}$ respectively? Let $A=\left[a_{i j}\right]_{n}$ be the matrix of $\rho(g)$. Then $\rho\left(g^{-1}\right)$ has the matrix of $\rho(g)^{-1}$, i.e. $A^{-1}$. By definition, we get that $\rho^{*}(g)$ is nothing but the linear map $\left(\rho\left(g^{-1}\right)\right)^{*}$. We prove that the matrix of $\rho^{*}(g)$ with respect to $\mathcal{B}^{*}$ is $\left(A^{-1}\right)^{T}$ by the following lemma.

Lemma 1. Let $M$ be the matrix representation of a linear map $T: \mathbb{F}^{n} \longrightarrow \mathbb{F}^{n}$ with respect to $\mathcal{B}$. Then the the matrix representation of the dual map $T^{*}: \operatorname{Hom}_{\mathbb{F}}\left(\mathbb{F}^{n}, \mathbb{F}\right) \longrightarrow$ $\operatorname{Hom}_{\mathbb{F}}\left(\mathbb{F}^{n}, \mathbb{F}\right)$ with respect to $\mathcal{B}^{*}$ is $M^{T}$.

Proof. Let $N=\left[N_{i j}\right]$ be the matrix representation of $T^{*}$ and $M=\left[M_{i j}\right]$ be that of $T$ with respect to $\mathcal{B}^{*}, \mathcal{B}$ respectively. Then

$$
\begin{aligned}
T^{*}\left(\boldsymbol{e}_{i}^{*}\right) & =\sum_{k=1}^{n} \boldsymbol{e}_{k}^{*} N_{k j} \\
\Longrightarrow T^{*}\left(\boldsymbol{e}_{i}^{*}\right)\left(\boldsymbol{e}_{j}\right) & =\sum_{k=1}^{n} \boldsymbol{e}_{k}^{*}\left(\boldsymbol{e}_{j}\right) N_{k j}=N_{i j}
\end{aligned}
$$

Again,

$$
\begin{aligned}
& T^{*}\left(\boldsymbol{e}_{i}^{*}\right)\left(\boldsymbol{e}_{j}\right)=\boldsymbol{e}_{i}^{*}\left(T\left(\boldsymbol{e}_{j}\right)\right) \\
= & \boldsymbol{e}_{i}^{*}\left(\sum_{\ell=1}^{n} M_{j \ell} \boldsymbol{e}_{\ell}\right)=M_{j i}
\end{aligned}
$$

Therefore $M_{i j}=N_{j i}$ and hence the proof.

## Tensor product of two representations

First we recall that what is the vector space $V \otimes_{\mathbb{F}} W$ for two $\mathbb{F}$-vector spaces $V, W$.
Definition 1 (Tensor product). Let $\mathbb{F}$ be a field and $V, W$ be two $\mathbb{F}$-vector spaces. Then the tensor product $V \otimes_{\mathbb{F}} W$ is an $\mathbb{F}$-vector space together with a universal bilinear map

$$
(u, v) \mapsto u \otimes v \quad \forall(u, v) \in V \times W
$$

such that for any bilinear map $\beta: V \times W \longrightarrow U$, where any $\mathbb{F}$-vector space $U$, there is a unique linear map $T: V \otimes_{\mathbb{F}} W \longrightarrow U$ such that the following diagram commutes


Figure 1
Two representations $(V, \rho)$ and $\left(W, \rho^{\prime}\right)$ of a group $G$ induces a representation on the vector space $V \otimes_{\mathbb{F}} W$, which is given the following natural action of $G$ on $V \otimes_{\mathbb{F}} W$

$$
g(u \otimes v):=g u \otimes g v
$$

This representation is the tensor product of the two representation $V, W$. By induction, we can define the tensor product of $m \mathbb{F}$-vector spaces $V_{1}, V_{2}, \ldots, V_{m}$

$$
V_{1} \otimes V_{2} \otimes \cdots \otimes V_{m}
$$

and hence any $m$ representations of $G$ (in the same base field $\mathbb{F}$ ) induces a representation on $V_{1} \otimes V_{2} \otimes \cdots \otimes V_{m}$. For any representation $V$, we denote the $n$-fold tensor product $V \otimes V \otimes \cdots \otimes V$ by $V^{\otimes n}$.
We define $\mathbb{Q}_{p}(-1)$ to be the dual representation of $\mathbb{Q}_{p}(1)$. Then for any $m \geq 1$, we define $\mathbb{Q}_{p}(m)$ to be the power $\mathbb{Q}_{p}(1)^{\otimes m}$ and $\mathbb{Q}_{p}(-m)$ to be the power $Q_{p}(-1)^{\otimes m}$.

Definition 2 (Tate twist). Let $V$ be a finite dimensional vector space over $\mathbb{Q}_{p}$ and $\rho: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{\mathbb{Q}_{p}}(V)$ be any p-adic representation of $G_{\mathbb{Q}}$. Then the $m^{\text {th }}$ Tate twist $V(m)$ of $V$ is defined as the following representation

$$
V(m):=V \otimes \mathbb{Q}_{p}(m) \quad \forall m \in \mathbb{Z}
$$

## Algebraicity and purity-the notion of motivic weight

Let $K$ be a number field and $V$ be a $p$-adic representation of $G_{K}=\operatorname{Gal}(\bar{K} / K)$, the absolute Galois group of $K$, which is unramified at all but finitely many places of $K$. Let $\Sigma$ denote that finite set of places outside which $V$ is unramified.

Definition 3 (Algebraicity). Let $\Sigma^{\prime}$ be a finite set of places of $K$ containing $\Sigma$. A p-adic representation $V$ of $G_{K}$ is said to be algebraic (or $\Sigma^{\prime}$-algebraic, to be precise) if for each place $v \notin \Sigma^{\prime}$, the characteristic polynomial of $\mathrm{Frob}_{v}\left(\mathrm{Frob}_{v}\right.$ is the Frobenius element of $G_{K}$ at $v$ and it acts on $V$ ) has coefficients in $\overline{\mathbb{Q}}$.

Definition 4 (Purity). Let $w$ be an integer. A p-adic representation $V$ of $G_{K}$ is said to be pure of weight $w$, if there exists a finite set $\Sigma^{\prime}$ of places of $K$ containing $\Sigma$, such that $V$ is $\Sigma^{\prime}$-algebraic and all the roots of the characteristic polynomial of Frob $_{v}$ has complex absolute value $q_{v}^{-w / 2}$ for all $v \notin \Sigma^{\prime}$, where $q_{v}$ is the cardinality of the finite residue field of $K_{v}$, i.e. the completion of $K$ at $v$.

This $w$ is called the motivic weight of $V$. For example, we show that $\mathbb{Q}_{p}(1)$ is algebraic and pure of weight -2 .

Proposition 2. The p-adic cyclotomic character $\mathbb{Q}_{p}(1)$ is algebraic and pure of weight -2 .

Proof. The $p$-adic cyclotomic character is an 1-dimensional $p$-adic representation of $G_{\mathbb{Q}}$ given by the map described earlier

$$
\chi_{p}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{1}\left(\mathbb{Q}_{p}\right)
$$

In fact, for any $\sigma \in G_{\mathbb{Q}}, \chi_{p}(\sigma) \in \mathbb{Z}_{p}^{*}$. Let $\ell \neq p$ be a prime. We recall that $\chi_{p}$ maps $\sigma \in G_{\mathbb{Q}}$ to a unique representative $\left\{z_{n}\right\}_{n \geq 1}$ satisfying the properties

1. $\sigma\left(\zeta_{p^{n}}\right)=\zeta_{p^{n}}^{z_{n}}$
2. $z_{n} \equiv z_{n+1}\left(\bmod p^{n}\right)$

We first show that for any prime $\ell \neq p, \mathbb{Q}_{p}(1)$ is unramified at $\ell$, i.e., the inertia subgroup $I_{\ell}$ of $G_{K}$ at the prime $\ell$ acts trivially. The map $\chi_{p}$ factors as follows, for each $n \in \mathbb{N}$


Figure 4
This restriction map $\left.\sigma \longmapsto \sigma\right|_{\mathbb{Q}\left(\zeta_{p^{n}}\right)}$ takes $I_{\ell}$ to the inertia subgroup

$$
I_{\left(\ell_{n} \mid \ell\right)} \leq \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p^{n}}\right) / \mathbb{Q}\right)
$$

where $\ell_{n}$ is some prime of $\mathbb{Q}\left(\zeta_{p^{n}}\right)$ lying above $\ell$. We know that $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{m}\right]$ for $K=\mathbb{Q}\left(\zeta_{m}\right)$ (cf. Marcus §2 theorem 10). Therefore

$$
\operatorname{disc}\left(\mathbb{Z}\left[\zeta_{m}\right]\right)=\operatorname{disc}\left(\zeta_{m}\right)=\frac{(-1)^{\frac{\varphi(m)}{2}} m^{\varphi(m)}}{\prod_{p \mid m} p^{\frac{\varphi(m)}{p-1}}}
$$

When $m=p^{n}$, we have that $\ell \nmid \operatorname{disc}\left(\mathbb{Z}\left[\zeta_{m}\right]\right)$. By theorem 24, §3, Number Fields, $\ell$ is unramified and hence $I_{\left(\ell_{n} \mid \ell\right)}$ is trivial. Thus $I_{\ell}$ acts trivially on $\mathbb{Q}_{p}$ (since $I_{\ell}$ is inverse limit of $I_{\ell_{n}}$ ). Therefore $\chi_{p}$ is unramified outside $\{p\}$. We get that, for all $n$,

$$
\left.\operatorname{Frob}_{\ell}\right|_{\mathbb{Q}\left(\zeta_{p^{n}}\right)}(x) \equiv x^{\ell} \quad\left(\bmod \ell_{n}\right)
$$

By uniqueness of the Frobenius element, $\left.\operatorname{Frob}_{\ell}\right|_{\mathbb{Q}\left(\zeta_{p^{n}}\right)}$ is same as $x \mapsto x^{\ell}$. Therefore $z_{n}=\ell$ for all sufficiently large $n$. Thus the sequence $\left\{z_{n}\right\}_{n \geq 1}$ converges to the image of $\ell \in \mathbb{Z}$ in $\mathbb{Q}_{p}$. Since $\ell \not \equiv 0(\bmod p)$, we get that $z_{1} \neq 0$. This shows that $\chi_{p}\left(\right.$ Frob $\left._{\ell}\right)=\ell$, $\ell \in \mathbb{Z}_{p}^{*}$ and hence represents the $1 \times 1$ matrix $[\ell]$ in $\mathrm{GL}_{1}\left(\mathbb{Q}_{p}\right)$. This shows that the characteristic polynomial of $\mathrm{Frob}_{\ell}$ is $\operatorname{det}\left(T I_{1}-\chi_{p}\left(\mathrm{Frob}_{\ell}\right)\right)=T-\ell$. Therefore we can take $\Sigma^{\prime}=\Sigma=\{p\}$ and the characteristic polynomial of $\mathrm{Frob}_{\ell}$ has coefficients $^{\text {che }}$ in $\overline{\mathbb{Q}}$ and its only root has complex absolute value $\ell=\ell^{-\frac{-2}{2}}$ for all $\ell \neq p$ and also the cardinality of the residue field of $\mathbb{Q}$ at $\ell$, i.e., $\mathbb{F}_{\ell}=\mathbb{Z} / \ell \mathbb{Z}$, is $\ell$. Hence $\mathbb{Q}_{p}(1)$ is algebraic and pure of weight -2 .

## References

[1] Jean-Marc Fontaine \& Yi Ouyang, Theory of p-adic Galois Representations [2] Jürgen Neukirch, Algebraic Number Theory
[3] Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions
[4] Willian Fultom \& Joe Harris, Representation Theory: A First Course
[5] Daniel A. Marcus, Number Fields, Second Edition (2018)

