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These notes are a shameless ripoff of some notes by Samuel Marks. Go read those notes if you
want some actually good exposition. Any errors are my own.

1 Introduction

The aim of these notes is to introduce Galois representations. We let GQ denote the absolute Galois
group Gal(Q/Q), for Q a fixed algebraic closure. Our first and most important definition is the
following.

Definition 1. A Galois representation is a continuous group homomorphism ρ : GQ → GLn(F )
for F a topological vector space.1 The representation is `-adic if F is an extension of Q` (typically
a finite extension or Q`).

Remark 2. There is a corresponding notion of Galois representation of GK := Gal(Ksep/K) for
any field K. If no K is specified then we always take K = Q.

Before we say anything about Galois representations, we should first talk more about GQ itself.

2 Galois Theory

Fittingly, one of the most fundamental results in Galois theory is the following.

Theorem 3 (Fundamental Theorem of Galois Theory). Let L/K be a finite Galois extension.
Then, there is an inclusion-reversing bijection

{subgroups H ≤ Gal(L/K)} ←→ {subextensions L/M/K}

given by H 7→ LH and M 7→ Aut(L/M). This bijection preserves degree and restricts to a bijection
between normal subgroups of Gal(L/K) and Galois subextensions of L/K (in the sense that M/K
is Galois).

If L/K is an infinite Galois extension2 then the above result no longer holds true. The fix comes
from considering the topology on Gal(L/K). Working over Q, consider the collection of finite

1We equip GLn(F ) with the subspace topology coming from the product topology on Mn(F ) ∼= Fn2

.
2In general, a Galois extension L/K is defined to be algebraic, separable, and normal. Equivalently, L/K is

algebraic and LAut(L/K) = K.
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Galois extensions K/Q (contained inside Q), partially ordered with respect to inclusion. This gives
rise to an inverse system of groups Gal(K/Q) with restriction maps

Gal(L/Q) � Gal(K/Q), σ 7→ σ|K

for K ⊆ L.3 We obtain an inverse limit

lim←−
K

Gal(K/Q) =

{
(σK) ∈

∏
K

Gal(K/Q) : σL|K = σK for every L ⊇ K

}
.

Theorem 4. Let L/K be a Galois extension. Then, the natural map

Gal(L/K)→ lim←−
M

Gal(M/K), σ 7→ σ|M

with RHS ranging over finite Galois subextensions L/M/K is a group isomorphism. In particular,
taking L = Q and K = Q gives a description of GQ as an inverse limit of finite groups.

The group lim←−
M

Gal(M/K) can be equipped with a topology by endowing each Gal(M/K) with the

discrete topology (which is the only choice since this is a finite group) and endowing lim←−
M

Gal(M/K)

with the subspace topology coming from the induced product topology. Using the above isomor-
phism, this gives a topology on Gal(L/K) called the Krull topology.4

Proposition 5. Let L/K be a Galois extension.

(a) Gal(L/K) is a topological group – i.e., the multiplication and inversion maps on Gal(L/K)
are continuous.

(b) Let L/M/K be a Galois subextension. Then, the restriction map Gal(L/K) � Gal(M/K)
is continuous with kernel Gal(L/M). Hence, there is a short exact sequence of topological
groups

1 Gal(L/M) Gal(L/K) Gal(M/K) 1

(c) Let L/M/K be a finite Galois subextension. Then, Gal(L/M) is a normal clopen subgroup
of Gal(L/K).

(d) The collection {Gal(L/M) : M/K finite Galois} is a basis of open sets at idL in Gal(L/K).

The fact that Gal(L/K) is a topological group implies that multiplication by any fixed element is
a homeomorphism of Gal(L/K) and that any open subgroup is automatically closed. The above
result allows us to modify the statement of the Fundamental Theorem of Galois Theory so that
it holds for infinite Galois extensions. The key is that closed normal subgroups correspond to
Galois extensions and open subgroups correspond to finite extensions, so open normal subgroups
correspond to finite Galois extensions.

3This is well-defined since K/Q is Galois and so σ(K) ⊆ K for every σ ∈ Gal(L/Q).
4In fact, Gal(L/K) is a typical example of a profinite group, which are topological groups that are always compact

(by Tychonoff’s theorem) and totally disconnected (in the sense that they have no nontrivial connected subsets).
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3 Cyclotomic Characters

Given n ≥ 1, let µn := {ζ ∈ Q× : ζn = 1} denote the set of nth roots of unity in Q. Then, the
extension Q(µn)/Q is Galois with

(Z/nZ)×
∼−→ Gal(Q(µn)/Q), a 7→ (ζ 7→ ζa)

where ζ is any element of µn (check that this is well-defined). Then, the union µ`∞ :=
⋃
n≥1 µ`n

satisfies

Gal(Q(µ`∞)/Q) ∼= lim←−
n≥1

Gal(Q(µ`n)/Q) ∼= lim←−
n≥1

(Z/`nZ)× ∼= Z×` ,

where you should think through carefully where each isomorphism comes from. We define the
`-adic cyclotomic character χ` to be the composition

GQ � Gal(Q(µ`∞)/Q)
∼−→ Z×` ↪→ Q×` = GL1(Q`).

Let’s now cast this example in a slightly different light. We have an inverse system

µ` µ`2 µ`3 · · ·(·)` (·)` (·)`

giving rise to M := lim←−
n≥1

µ`n . There is a natural action of Z` on M given by

a · ζ = ζa := (ζann )

for a = (an) ∈ Z` and ζ = (ζn) ∈ M (check that this is well-defined). This makes M into a free
Z`-module of rank 1. There is a natural (continuous) action of GQ on M , which one can check
satisfies

σ · ζ = ζσ = ζχ`(σ)

for σ ∈ GQ and ζ ∈M thinking of χ` with values in Z`. This Galois action is also compatible with
the Z`-module structure on M , which is equivalent to the identity (ζa)σ = (ζσ)a. Now tensor with
Q` to get a Galois representation of GQ. This is typically denoted Q`(1) and called a Tate twist.

4 Complex Representations

So far we’ve been looking at `-adic Galois representations, so what about complex Galois represen-
tations? Since the topologies on Q` and C are quite different it is perhaps not surprising that both
kinds of representations should have different flavors. A good illustration of this is the following
result.

Proposition 6. Let ρ : GQ → GLn(C) be a complex Galois representation. Then, there exists a
finite Galois extension K/Q such that there is a factorization

GQ GLn(C)

Gal(K/Q)

ρ

∃!
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Hence, studying individual complex Galois representations boils down to the representation theory
of finite groups. Note, however, that the K in the proposition depends on ρ and so it is natural
to take our domain to be GQ when considering families of complex Galois representations (as one
wants to do when studying things like the Langlands program).

Proof. The key is that GQ has arbitrarily small subgroups while GLn(C) does not, in the sense that
there is an open neighborhood U ⊆ GLn(C) of the identity containing no nontrivial subgroups.
The set ρ−1(U) is an open neighborhood of idQ in GQ and so contains an open normal subgroup

of the form Gal(Q/K) for some finite Galois K/Q. Then, ρ(Gal(Q/K)) is a subgroup of GLn(C)
contained in U hence must be trivial. The result follows since GQ/Gal(Q/K) ∼= Gal(K/Q).

5 Ramification

Given a Galois representation ρ : GQ → GLn(F ), when can we “lift” Frp ∈ GFp and make sense
of ρ(Frp)?

5 Intuitively, we can do this when ρ has “good local behavior” at p, something which
ultimately boils down to ramification. While we’re at it, we may as well as examine Galois repre-
sentations ρ : GK → GLn(F ) for K any number field.

Recall from last time the setup of decomposition and inertia groups. Given L/K a finite Galois
extension of number fields, consider q a prime of L lying above a prime p of K. Then, there is a
decomposition group

Dq := StabGal(L/K)(q) = {σ ∈ Gal(L/K) : σ(q) = q}

and inertia group
Iq := ker(Dq � Gal(kq/kp))

for residue fields kq := OL/q and kp := OK/p. The group Gal(kq/kp) is finite cyclic generated by
Frobenius Frp, characterized by Frp = (·)Np for Np := |kp|.6 If Iq = 0 (i.e., if L/K is unramified
at q) then Dq

∼= Gal(kq/kp) and so Frp certainly makes sense as an element of Dq ⊆ Gal(L/K).
This is a bit overkill though, since if we have a representation ρ : Gal(L/K) → GLn(F ) then our
argument shows that all we need to define ρ(Frp) is that Iq ⊆ ker ρ.

If F = C then the above is enough to make sense of ρ(Frp) (thinking of Frp as an element of Gkp)
by the factorization result we proved earlier. The only caveat is that we have to choose a prime
q of L lying above p, which presents little difficulty since different choices of lift yield conjugate
decomposition groups. However, we want our theory to work for more general F . In order to do
this we need to make sense of an absolute inertia group Ip ≤ GK that does not depend on choosing
some finite extension of K. Assuming we have such a group, we can make the following definition.

Definition 7. A Galois representation ρ : GK → GLn(F ) is unramified at a prime p of K if
Ip ⊆ ker ρ. Equivalently, we can make sense of ρ(Frp).

The only caveat (which does not affect the above definition), as we will soon see, is that we will
only be able to define Ip up to conjugacy. One way to define the absolute inertia group is to port
the above theory over to the setting of local fields. As discussed last time there is an isomorphism
of short exact sequences

5Recall that the Frobenius Frp is defined by Frp(x) = xp for every x ∈ Fp.
6This Frobenius evidently lifts to an element of Gkp .
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1 Iq Dq Gal(kq/kp) 1

1 ILq/Kp
Gal(Lq/Kp) Gal(kLq/kKp) 1

∼= ∼= ∼=

Hence, lifting Frobenius can be interpreted in terms of local inertia groups. By passing to an
inverse limit with respect to all finite Galois extensions of Kp, we obtain IKp fitting into a short
exact sequence

1 IKp GKp GkKp
1

of topological groups (meaning that the maps in the above sequence are continuous). The key now
is that the composite embedding K ↪→ Kp ↪→ Kp induces an embedding K ↪→ Kp unique up to
conjugacy by GK . Hence, we can define

Ip := im(IKp ↪→ GKp ↪→ GK),

once again unique up to conjugacy by GK .

Example 8. We claim that the `-adic cyclotomic character χ` : GQ → Q×` is unramified at every
prime p 6= `. Indeed, χ` factors through the map

GQ � Gal(Q(µ`∞)/Q) ∼= lim←−
n≥1

Gal(Q(µ`n)/Q)

and each extension Q(µ`n)/Q is unramified at p (since its discriminant is, up to sign, a power of
`). In fact, one can check that χ`(Frp) = p.
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