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Introduction

In a nutshell, we are interested in studying the absolute Galois group GQ := Gal(Q/Q). This is
an infinite profinite topological group that “knows” about all finite Galois extensions of Q.
Our primary tools for studying GQ are Galois representations, continuous homomorphisms
ρ : GQ → GLn(F ) for F some topological field. Natural choices for F include C (with its
Euclidean topology) or a finite field Fq (equipped with the discrete topology). But there is
often also reason to consider Q` for ` prime, giving rise to so-called `-adic Galois
representations. At the same time, we don’t just want to consider representations of GQ but
also of GQp := Gal(Qp/Qp). The topological field Qp is the simplest example of a so-called
local field, and it is exactly these kinds of fields that we are interested in studying in these
notes.
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Absolute Values and Discrete Valuations

Definition

Let K be a field. An absolute value on K is a map |·| : K → R≥0 such that, for every
x , y ∈ K ,

|x | = 0 ⇐⇒ x = 0;
|xy | = |x ||y |;
|x + y | ≤ |x |+ |y |.

We say that |·| is nonarchimedean or ultrametric if |x + y | ≤ max{|x |, |y |} for every
x , y ∈ K , and archimedean otherwise. A discrete valuation on K is a map
v : K → Z ∪ {∞} such that, for every x , y ∈ K ,

v(x) =∞ ⇐⇒ x = 0;
v(xy) = v(x) + v(y);
v(x + y) ≥ min{v(x), v(y)}.
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Absolute Values and Discrete Valuations

The data of the pair (K , |·|) is called a valued field (we often suppress |·| when it is clear from
context). K is then naturally a topological field with respect to the metric topology induced
by |·|. There is a natural equivalence relation ∼ on the set of absolute values on K given by
|·|1 ∼ |·|2 if |·|2 = |·|r1 for some r ∈ R>0, which precisely captures when two absolute values on
K induce the same (metric) topology. The equivalence classes of ∼ are called places or
sometimes primes, and together they form the set SK .

Given a discrete valuation v on K and 0 < c < 1, we obtain a nonarchimedean absolute value
|·|v ,c on K via |x |v ,c := cv(x). Note, however, that a (rank 1) nonarchimedean absolute value
|·| on K does not necessarily induce a discrete valuation on K . More on this later.
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Valuation Rings

Let (K , |·|) be a nonarchimedean valued field. The ring of integers or valuation ring of K is

OK := {x ∈ K : |x | ≤ 1},

which the reader can verify is an open local subring of K . Moreover, OK has fraction field K ,
unique maximal ideal mK := {x ∈ K : |x | < 1}, and unit group O×K = {x ∈ K : |x | = 1}. We
also have a residue field kK := OK/mK .

In the case that mK is principal, any generator of mK is called a uniformizer for K and is
typically denoted πK or $K (with the subscript K often omitted). Associated to this is the
discrete valuation vK : K → Z ∪ {∞} recording order of divisibility by πK (which is
independent of the choice of uniformizer). This fits into a short exact sequence

1 O×K K× Z 0v

with a choice of uniformizer πK inducing a splitting – i.e., a (non-canonical) isomorphism
K× ∼= O×K × Z.
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Local Fields

Definition

A local field is a valued field K such that the induced metric topology makes K into a
(non-discrete) locally compact topological field.

We immediately see that R and C are examples of (archimedean) local fields.

Proposition

Let K be a nonarchimedean valued field. Then, K is local if and only if K is (Cauchy)
complete and kK is finite.

In this case, OK is a compact local PID and K has a unique discrete valuation vK such that
vK (πK ) = 1 for any choice of uniformizer πK . We readily see that Qp and Fq ((t)) (the field of
Laurent series in t over Fq) are examples of nonarchimedean local fields.
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Classification of Local Fields

Theorem

Let K be a local field. Then, K is described up to isomorphism as a topological ring by one of
the following (where p > 0 is prime).

Case char(K ) char(kK ) Isomorphism Type

Equichar. 0 0 0 R,C
Mixed char. 0 p Finite extension of Qp

Equichar. p p p Finite extension of Fp ((t))

Notice how R arises from Q by completing with respect to the usual Euclidean absolute value
|·| = |·|∞. Similarly, Qp arises from Q via |·|p and Fq ((t)) arises from Fq(t) via |·|t or |·|t−1 .
This is no coincidence.
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Completion

Let K be a field and v ∈ SK . Given |·| representing v , define the completion Kv of K at v to
be the (Cauchy) completion of K with respect to the metric topology induced by |·|. This is a
well-defined object since choosing a different representative for v changes Kv by a unique
isomorphism (in fact, Kv has a universal property that gives us this result for free). Note also
that we can describe Kv in a more algebraic way using the process of adic completion.

Corollary

Let K be a global field (i.e., a finite extension of either Q or Fp(t)). Then, the completions of
K correspond precisely with the local fields – i.e., every completion of a global field is a local
field and every local field arises as a completion of a global field.

This explains one way in which local fields are “local.” We could say a lot more about the
connections between local and global fields, but let’s leave it at that for right now.
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Extending Absolute Values

Proposition

Let (K , |·|) be a complete nonarchimedean valued field and L a finite extension field of K .
Then, |·| admits a unique extension to L via the formula

|α| := |NL/K (α)|1/[L:K ],

where NL/K (α) is the norm of α ∈ L with respect to K .

Note that, given α ∈ L as above, we have a tower of field extensions K ⊆ K (α) ⊆ L and so
NL/K = NK(α)/K ◦ NL/K(α) and [L : K ] = [L : K (α)][K (α) : K ]. Hence, the extension of |·| to
L can be defined relative to each element of L. We obtain the following result.
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Extending Absolute Values

Corollary

(K , |·|) be a complete nonarchimedean valued field and L an algebraic extension field of K .
Then, |·| admits a unique extension to L via the formula

|α| := |NK(α)/K (α)|1/[K(α):K ].

In particular, we can extend |·| all the way to K .

The extended absolute value |·| : K → R≥0 is nonarchimedean and so we can define a valuation

vc : K → R ∪ {∞}, α 7→ log |α|
log c

,

where 0 < c < 1. This is, however, not a discrete valuation – i.e., v(K
×

) is not a discrete
subgroup of R. An easy way to see this is to note that p ∈ K and then consider all the
rational powers of p (which must be contained in K ).
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Ramification

Definition

Let L/K be a finite extension of nonarchimedean local fields with uniformizers πK and πL. To
this we associate the ramification index e(L/K ) := vL(πK ) and inertia degree
f (L/K ) := [kL : kK ]. We say that L/K is unramified if e(L/K ) = 1 and totally ramified if
e(L/K ) is as large as possible – i.e., e(L/K ) = [L : K ] since e(L/K )f (L/K ) = [L : K ].

The extension L/K is unramified if and only if mK is inert in OL – i.e., mKOL = mL.
Equivalently, any uniformizer for K is a uniformizer for L.

Example

1 Let L := Qp[x ]/(xe − p) ∼= Qp(p1/e). Then, L/Qp is totally ramified of degree e.
2 Let L := Qp(ζpn). Then, L/Qp is totally ramified of degree φ(pn) = pn−1(p − 1). A

uniformizer πL is given by 1− ζpn .
3 Let L := Qp(ζpn−1). Then, L/Qp is unramified of degree n.

Zachary Gardner Local Fields and Their Galois Theory June 25, 2021 11 / 23



Unramified Extensions

Theorem

Let K be a nonarchimedean local field. The correspondence L 7→ kL induces an equivalence of
categories between the category of finite unramified extensions of K and the category of finite
extensions of kK . This correspondence preserves, among other things, composita, Galois
groups, and splitting fields of polynomials admitting lifts to Z[x ].

This has several important consequences which we record here.

K has a unique (up to isomorphism) unramified extension Kn of degree n. This
corresponds to the degree n extension of kK , which is obtained as the splitting field of
xp

n − x over kK . Hence, Kn = K (ζpn−1) for ζpn−1 ∈ K sep.

The compositum of unramified extensions of K is unramified. Hence, K has a maximal
unramified extension Kunr given by

Kunr =
⋃
n≥1

Kn =
⋃

gcd(a,p)=1

K (ζa).
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More Ramification

Proposition

Let L/K be a finite extension of nonarchimedean local fields.
1 Suppose L/K is totally ramified of degree n. Then, the minimal polynomial over K of any

uniformizer πL is Eisenstein at mK .
2 Conversely, suppose that α ∈ K is a root of an Eisenstein polynomial over K of degree n.

Then, K (α)/K is totally ramified of degree n and α is a uniformizer for K (α).

Definition

Let L/K be a finite extension of nonarchimedean local fields. L/K is
tamely ramified if e(L/K ) is coprime to p;
wildly ramified if p divides e(L/K );
totally tamely ramified if it is both totally ramified and tamely ramified; and
totally wildly ramified if it is both totally ramified and wildly ramified
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More Ramification

Proposition

Let L/K be totally tamely ramified of degree n. Then, there exists a uniformizer πK ∈ K and

an nth root π
1/n
K ∈ L such that L = K (π

1/n
K ).

This allows us to realize the maximal totally tamely ramified extension K tam of K as⋃
gcd(p,n)=1 K (π

1/n
K ). This should be understood as containing all relevant nth roots of all

uniformizers for K . In particular, K tam contains all nth roots of unity with gcd(p, n) = 1 and

so contains Kunr. Explicitly, the extension K tam/Kunr is generated by π
1/n
K for gcd(p, n) = 1.

Our ultimate goal is to understand the absolute Galois group GK := Gal(K sep/K ), where K sep

is a chosen separable closure of K . We do this by studying finite Galois extensions L/K . For
convenience let q := |kK | and G := Gal(L/K ).
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Ramification Groups

Definition

The (lower) ramification series of L/K is

G = G−1 ⊇ G0 ⊇ G1 ⊇ · · ·

with Gi := {σ ∈ G : vL(σ(x)− x) ≥ i + 1 for every x ∈ OL}. Of these ramification groups,
IL/K := G0 is called the inertia subgroup and PL/K := G1 is called the wild inertia subgroup
(we will see where these names come from in a moment).

The discrete valuation vL is G -invariant and so the action of G preserves mL. It follows that
Gi consists of σ ∈ G acting trivially on OL/m

i+1
L . We conclude that Gi E G and Gi = 1 for

i � 0. We also have a natural short exact sequence

1 G0 G Gal(kL/kK ) 1

giving G/G0
∼= Gal(kL/kK ).

Zachary Gardner Local Fields and Their Galois Theory June 25, 2021 15 / 23



Ramification Groups

At the same time, we have

G0 → k×L , σ 7→ σ(πL)

πL

inducing an injection G0/G1 ↪→ k×L (hence G1 E G0) and

Gi → kL, σ 7→ σ(πL)− πL
πi+1
L

inducing an injection Gi/Gi+1 ↪→ kL (hence Gi+1 E Gi , where i ≥ 1).

Let Lunr and Ltam respectively denote the maximal unramified and tamely ramified
subextensions of L/K . Lunr/K is Galois with Gal(Lunr/K ) ∼= Gal(kL/kK ). Since
G/G0

∼= Gal(kL/kK ) it follows that Lunr = LG0 . A similar argument shows that Ltam = G1 with
Gal(Ltam/K ) ∼= G/G1 (which has order f (L/K )).
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Ramification Groups

Corollary

1 |IL/K | = e(L/K ). In particular, L/K is unramified if and only if IL/K = 1.
2 Write e(L/K ) = qrm with gcd(q, r) = 1. Then, |PL/K | divides |kL| with order qr . In

particular, L/K is tamely ramified if and only if PL/K = 1.

L

Ltam

Lunr

K

totally wildly ramifiedG1

totally tamely ramifiedG0/G1

unramifiedG/G0

Figure: Factoring the extension L/K
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The Unramified Case

Suppose now that L/K is unramified. Then, there is a natural isomorphism G ∼= Gal(kL/kK )
and so G is cyclic generated by the Frobenius element FrL/K corresponding to the canonical
generator of Gal(kL/kK ) and characterized by FrL/K (x) ≡ xq (mod πK ) for every x ∈ OL

(where we have identified πK as a uniformizer of L).

Continuing in this manner lets us describe the Galois group Gunr
K := Gal(Kunr/K ). Namely,

Gunr
K
∼= GkK

∼= Ẑ is topologically cyclic with 1 corresponding to FrK characterized by
FrK (x) ≡ xq (mod πK ) for every x ∈ OKunr or, equivalently, FrK |L = FrL/K for every finite
unramified extension L/K . As above, we call FrK the Frobenius element of K . Note that
Kunr is almost a local field in the sense that OKunr is a DVR with perfect residue field kK .
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The Tame Case

What about G tam
K := Gal(K tam/K )? We have a natural short exact sequence

1 Gal(K tam/Kunr) Gal(K tam/K ) Gal(Kunr/K ) 1

Recalling that K tam =
⋃

gcd(p,n)=1 K
unr(π

1/n
K ), we have

Gal(K tam/Kunr) ∼=
∏
`6=p

Z`

with topological generator τK arising from the generators of Z/nZ for gcd(n, p) = 1. Let
F̂rK ∈ Gal(K tam/K ) be a lift of FrK ∈ Gal(Kunr/K ).

Theorem (Iwasawa)

Gal(K tam/K ) is topologically generated by F̂rK and τK with sole relation

F̂rK τK F̂rK = τqK .
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Analogous to before we have a factorization

K sep

K tam

Kunr

K

PK

IK

Ẑ

We call IK the absolute inertia group of K and PK the absolute wild inertia group of K .
These are given respectively by inverse limits over IL/K and PL/K for L/K finite Galois.
Equivalently, since inverse limits preserve kernels, we have

IK = ker(GK � GkK )

and
PK = ker(IK → kK

×
).
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Some Success

When K has positive characteristic GK can be described relatively succinctly as a certain
semidirect product of PK and G tam

K . The key ingredient comes from looking at the maximal
pro-p extension K (p) of K with Galois group GK (p) := Gal(K (p)/K ). In a nutshell, one looks
at the Artin-Schreier exact sequence

0 Fp K (p) K (p) 0
x 7→xp−x

of GK (p)-modules and studies the associated long exact sequence.

When K has characteristic 0 things are much more difficult, though a result of Jannsen and
Wingberg does give an explicit set of generators and relations in the p-adic case for p 6= 2.
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Local-to-Global

Fix a number field K . Let L be a finite Galois extension field of K and q a prime of L lying
above a prime p of K (i.e., p = q ∩ K ). Denote the associated residue fields by kq := OL/q
and kp := OK/p. Let Dq and Iq denote the associated decomposition and inertia group. We
have a natural short exact sequence

1 Iq Dq Gal(kq/kp) 1

which is in fact isomorphic to the short exact sequence

1 ILq/Kp
Gal(Lq/Kp) Gal(kLq/kKp) 1

in the sense that we have a commutative diagram

1 Iq Dq Gal(kq/kp) 1

1 ILq/Kp
Gal(Lq/Kp) Gal(kLq/kKp) 1

∼= ∼= ∼=
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Local-to-Global

This follows from the fact that σ ∈ Dq induces a commutative diagram

K K

L L

Kp Kp

Lq Lq

σ

∃!

This provides us with one way to define absolute inertia and decomposition subgroups Ip and
Dp of GK .
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