Local Fields and Their Galois Theory

Zachary Gardner

June 25, 2021

Zachary Gardner

< □ > < □ > < □ > < □ > < □ >

Introduction

In a nutshell, we are interested in studying the absolute Galois group $G_{\mathbb{Q}} := \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. This is an infinite profinite topological group that "knows" about all finite Galois extensions of \mathbb{Q} . Our primary tools for studying $G_{\mathbb{Q}}$ are Galois representations, continuous homomorphisms $\rho: G_{\mathbb{Q}} \to \operatorname{GL}_n(F)$ for F some topological field. Natural choices for F include \mathbb{C} (with its Euclidean topology) or a finite field \mathbb{F}_q (equipped with the discrete topology). But there is often also reason to consider \mathbb{Q}_ℓ for ℓ prime, giving rise to so-called ℓ -adic Galois representations. At the same time, we don't just want to consider representations of $G_{\mathbb{Q}}$ but also of $G_{\mathbb{Q}_p} := \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$. The topological field \mathbb{Q}_p is the simplest example of a so-called *local field*, and it is exactly these kinds of fields that we are interested in studying in these notes.

イロト 不得 トイヨト イヨト ニヨー

Absolute Values and Discrete Valuations

Definition

Let K be a field. An **absolute value** on K is a map $|\cdot| : K \to \mathbb{R}^{\geq 0}$ such that, for every $x, y \in K$,

- $|x| = 0 \iff x = 0;$
- |xy| = |x||y|;
- $|x+y| \le |x|+|y|$.

We say that $|\cdot|$ is **nonarchimedean** or **ultrametric** if $|x + y| \le \max\{|x|, |y|\}$ for every $x, y \in K$, and **archimedean** otherwise. A **discrete valuation** on K is a map $v : K \to \mathbb{Z} \cup \{\infty\}$ such that, for every $x, y \in K$, • $v(x) = \infty \iff x = 0$;

- v(xy) = v(x) + v(y);
- $v(x+y) \geq \min\{v(x), v(y)\}.$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Absolute Values and Discrete Valuations

The data of the pair $(K, |\cdot|)$ is called a **valued field** (we often suppress $|\cdot|$ when it is clear from context). *K* is then naturally a topological field with respect to the metric topology induced by $|\cdot|$. There is a natural equivalence relation \sim on the set of absolute values on *K* given by $|\cdot|_1 \sim |\cdot|_2$ if $|\cdot|_2 = |\cdot|_1^r$ for some $r \in \mathbb{R}^{>0}$, which precisely captures when two absolute values on *K* induce the same (metric) topology. The equivalence classes of \sim are called **places** or sometimes **primes**, and together they form the set S_K .

Given a discrete valuation v on K and 0 < c < 1, we obtain a nonarchimedean absolute value $|\cdot|_{v,c}$ on K via $|x|_{v,c} := c^{v(x)}$. Note, however, that a (rank 1) nonarchimedean absolute value $|\cdot|$ on K does not necessarily induce a discrete valuation on K. More on this later.

イロト 不良 トイヨト イヨト

Valuation Rings

Let $(K, |\cdot|)$ be a nonarchimedean valued field. The ring of integers or valuation ring of K is

 $\mathcal{O}_{\mathcal{K}} := \{ x \in \mathcal{K} : |x| \leq 1 \},$

which the reader can verify is an open local subring of K. Moreover, \mathcal{O}_K has fraction field K, unique maximal ideal $\mathfrak{m}_K := \{x \in K : |x| < 1\}$, and unit group $\mathcal{O}_K^{\times} = \{x \in K : |x| = 1\}$. We also have a **residue field** $k_K := \mathcal{O}_K/\mathfrak{m}_K$.

In the case that \mathfrak{m}_K is principal, any generator of \mathfrak{m}_K is called a **uniformizer** for K and is typically denoted π_K or ϖ_K (with the subscript K often omitted). Associated to this is the discrete valuation $v_K : K \to \mathbb{Z} \cup \{\infty\}$ recording order of divisibility by π_K (which is independent of the choice of uniformizer). This fits into a short exact sequence

$$1 \longrightarrow \mathcal{O}_{\mathcal{K}}^{\times} \longrightarrow \mathcal{K}^{\times} \xrightarrow{v} \mathbb{Z} \longrightarrow 0$$

with a choice of uniformizer $\pi_{\mathcal{K}}$ inducing a splitting – i.e., a (non-canonical) isomorphism $\mathcal{K}^{\times} \cong \mathcal{O}_{\mathcal{K}}^{\times} \times \mathbb{Z}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Local Fields

Definition

A **local field** is a valued field K such that the induced metric topology makes K into a (non-discrete) locally compact topological field.

We immediately see that \mathbb{R} and \mathbb{C} are examples of (archimedean) local fields.

Proposition

Let K be a nonarchimedean valued field. Then, K is local if and only if K is (Cauchy) complete and k_K is finite.

In this case, \mathcal{O}_K is a compact local PID and K has a unique discrete valuation v_K such that $v_K(\pi_K) = 1$ for any choice of uniformizer π_K . We readily see that \mathbb{Q}_p and $\mathbb{F}_q((t))$ (the field of Laurent series in t over \mathbb{F}_q) are examples of nonarchimedean local fields.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Classification of Local Fields

Theorem

Let K be a local field. Then, K is described up to isomorphism as a topological ring by one of the following (where p > 0 is prime).

Case	char(K)	char(k _K)	Isomorphism Type
Equichar. 0	0	0	\mathbb{R},\mathbb{C}
Mixed char.	0	р	Finite extension of \mathbb{Q}_p
Equichar. p	р	р	Finite extension of $\mathbb{F}_{p}((t))$

Notice how \mathbb{R} arises from \mathbb{Q} by completing with respect to the usual Euclidean absolute value $|\cdot| = |\cdot|_{\infty}$. Similarly, \mathbb{Q}_p arises from \mathbb{Q} via $|\cdot|_p$ and $\mathbb{F}_q((t))$ arises from $\mathbb{F}_q(t)$ via $|\cdot|_t$ or $|\cdot|_{t^{-1}}$. This is no coincidence.

Completion

Let K be a field and $v \in S_K$. Given $|\cdot|$ representing v, define the **completion** K_v of K at v to be the (Cauchy) completion of K with respect to the metric topology induced by $|\cdot|$. This is a well-defined object since choosing a different representative for v changes K_v by a unique isomorphism (in fact, K_v has a universal property that gives us this result for free). Note also that we can describe K_v in a more algebraic way using the process of adic completion.

Corollary

Let K be a global field (i.e., a finite extension of either \mathbb{Q} or $\mathbb{F}_p(t)$). Then, the completions of K correspond precisely with the local fields – i.e., every completion of a global field is a local field and every local field arises as a completion of a global field.

This explains one way in which local fields are "local." We could say a lot more about the connections between local and global fields, but let's leave it at that for right now.

Extending Absolute Values

Proposition

Let $(K, |\cdot|)$ be a complete nonarchimedean valued field and L a finite extension field of K. Then, $|\cdot|$ admits a unique extension to L via the formula

 $|\alpha| := |\mathsf{N}_{\mathsf{L}/\mathsf{K}}(\alpha)|^{1/[\mathsf{L}:\mathsf{K}]},$

where $N_{L/K}(\alpha)$ is the norm of $\alpha \in L$ with respect to K.

Note that, given $\alpha \in L$ as above, we have a tower of field extensions $K \subseteq K(\alpha) \subseteq L$ and so $N_{L/K} = N_{K(\alpha)/K} \circ N_{L/K(\alpha)}$ and $[L:K] = [L:K(\alpha)][K(\alpha):K]$. Hence, the extension of $|\cdot|$ to L can be defined relative to each element of L. We obtain the following result.

- 4 回 ト - 4 回 ト

Extending Absolute Values

Corollary

 $(K, |\cdot|)$ be a complete nonarchimedean valued field and L an algebraic extension field of K. Then, $|\cdot|$ admits a unique extension to L via the formula

 $|\alpha| := |N_{K(\alpha)/K}(\alpha)|^{1/[K(\alpha):K]}.$

In particular, we can extend $|\cdot|$ all the way to \overline{K} .

The extended absolute value $|\cdot|: \overline{K} \to \mathbb{R}^{\geq 0}$ is nonarchimedean and so we can define a valuation

$$v_c: \overline{K} \to \mathbb{R} \cup \{\infty\}, \qquad \alpha \mapsto \frac{\log |\alpha|}{\log c},$$

where 0 < c < 1. This is, however, not a *discrete* valuation – i.e., $v(\overline{K}^{\times})$ is not a discrete subgroup of \mathbb{R} . An easy way to see this is to note that $p \in K$ and then consider all the rational powers of p (which must be contained in \overline{K}).

Ramification

Definition

Let L/K be a finite extension of nonarchimedean local fields with uniformizers π_K and π_L . To this we associate the **ramification index** $e(L/K) := v_L(\pi_K)$ and **inertia degree** $f(L/K) := [k_L : k_K]$. We say that L/K is **unramified** if e(L/K) = 1 and **totally ramified** if e(L/K) is as large as possible – i.e., e(L/K) = [L : K] since e(L/K)f(L/K) = [L : K].

The extension L/K is unramified if and only if \mathfrak{m}_K is inert in \mathcal{O}_L – i.e., $\mathfrak{m}_K \mathcal{O}_L = \mathfrak{m}_L$. Equivalently, any uniformizer for K is a uniformizer for L.

Example

- Let $L := \mathbb{Q}_p[x]/(x^e p) \cong \mathbb{Q}_p(p^{1/e})$. Then, L/\mathbb{Q}_p is totally ramified of degree e.
- Let L := Q_p(ζ_{pⁿ}). Then, L/Q_p is totally ramified of degree $\phi(p^n) = p^{n-1}(p-1)$. A uniformizer π_L is given by 1 − ζ_{pⁿ}.
- Let $L := \mathbb{Q}_p(\zeta_{p^n-1})$. Then, L/\mathbb{Q}_p is unramified of degree n.

ヘロト 不得 トイヨト イヨト ニヨー

Unramified Extensions

Theorem

Let K be a nonarchimedean local field. The correspondence $L \mapsto k_L$ induces an equivalence of categories between the category of finite unramified extensions of K and the category of finite extensions of k_K . This correspondence preserves, among other things, composita, Galois groups, and splitting fields of polynomials admitting lifts to $\mathbb{Z}[x]$.

This has several important consequences which we record here.

- K has a unique (up to isomorphism) unramified extension K_n of degree n. This corresponds to the degree n extension of k_K, which is obtained as the splitting field of x^{pⁿ} x over k_K. Hence, K_n = K(ζ_{pⁿ-1}) for ζ_{pⁿ-1} ∈ K^{sep}.
- The compositum of unramified extensions of K is unramified. Hence, K has a maximal unramified extension K^{unr} given by

$$K^{\operatorname{unr}} = \bigcup_{n \ge 1} K_n = \bigcup_{\operatorname{gcd}(a,p)=1} K(\zeta_a).$$

< 日 > < 同 > < 三 > < 三 >

More Ramification

Proposition

Let L/K be a finite extension of nonarchimedean local fields.

- Suppose L/K is totally ramified of degree n. Then, the minimal polynomial over K of any uniformizer π_L is Eisenstein at \mathfrak{m}_K .
- Conversely, suppose that $\alpha \in \overline{K}$ is a root of an Eisenstein polynomial over K of degree n. Then, $K(\alpha)/K$ is totally ramified of degree n and α is a uniformizer for $K(\alpha)$.

Definition

Let L/K be a finite extension of nonarchimedean local fields. L/K is

- tamely ramified if e(L/K) is coprime to p;
- wildly ramified if p divides e(L/K);
- totally tamely ramified if it is both totally ramified and tamely ramified; and
- totally wildly ramified if it is both totally ramified and wildly ramified

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

More Ramification

Proposition

Let L/K be totally tamely ramified of degree n. Then, there exists a uniformizer $\pi_K \in K$ and an nth root $\pi_K^{1/n} \in L$ such that $L = K(\pi_K^{1/n})$.

This allows us to realize the maximal totally tamely ramified extension K^{tam} of K as $\bigcup_{\gcd(p,n)=1} K(\pi_K^{1/n})$. This should be understood as containing all relevant *n*th roots of all uniformizers for K. In particular, K^{tam} contains all *n*th roots of unity with $\gcd(p,n) = 1$ and so contains K^{unr} . Explicitly, the extension $K^{\text{tam}}/K^{\text{unr}}$ is generated by $\pi_K^{1/n}$ for $\gcd(p,n) = 1$.

Our ultimate goal is to understand the absolute Galois group $G_K := \text{Gal}(K^{\text{sep}}/K)$, where K^{sep} is a chosen separable closure of K. We do this by studying finite Galois extensions L/K. For convenience let $q := |k_K|$ and G := Gal(L/K).

Ramification Groups

Definition

The (lower) ramification series of L/K is

$$G = G_{-1} \supseteq G_0 \supseteq G_1 \supseteq \cdots$$

with $G_i := \{ \sigma \in G : v_L(\sigma(x) - x) \ge i + 1 \text{ for every } x \in \mathcal{O}_L \}$. Of these ramification groups, $I_{L/K} := G_0$ is called the **inertia subgroup** and $P_{L/K} := G_1$ is called the **wild inertia subgroup** (we will see where these names come from in a moment).

The discrete valuation v_L is *G*-invariant and so the action of *G* preserves \mathfrak{m}_L . It follows that G_i consists of $\sigma \in G$ acting trivially on $\mathcal{O}_L/\mathfrak{m}_L^{i+1}$. We conclude that $G_i \leq G$ and $G_i = 1$ for $i \gg 0$. We also have a natural short exact sequence

$$1 \longrightarrow G_0 \longrightarrow G \longrightarrow \operatorname{Gal}(k_L/k_K) \longrightarrow 1$$

giving $G/G_0 \cong \operatorname{Gal}(k_L/k_K)$.

Ramification Groups

At the same time, we have

$$G_0 o k_L^{ imes}, \qquad \sigma \mapsto rac{\sigma(\pi_L)}{\pi_L}$$

inducing an injection $G_0/G_1 \hookrightarrow k_L^{\times}$ (hence $G_1 \trianglelefteq G_0$) and

$$G_i \to k_L, \qquad \sigma \mapsto \frac{\sigma(\pi_L) - \pi_L}{\pi_L^{i+1}}$$

inducing an injection $G_i/G_{i+1} \hookrightarrow k_L$ (hence $G_{i+1} \trianglelefteq G_i$, where $i \ge 1$).

Let L_{unr} and L_{tam} respectively denote the maximal unramified and tamely ramified subextensions of L/K. L_{unr}/K is Galois with $Gal(L_{unr}/K) \cong Gal(k_L/k_K)$. Since $G/G_0 \cong Gal(k_L/k_K)$ it follows that $L_{unr} = L^{G_0}$. A similar argument shows that $L_{tam} = G_1$ with $Gal(L_{tam}/K) \cong G/G_1$ (which has order f(L/K)).

Ramification Groups

Corollary

|I_{L/K}| = e(L/K). In particular, L/K is unramified if and only if I_{L/K} = 1.
 Write e(L/K) = q^r m with gcd(q, r) = 1. Then, |P_{L/K}| divides |k_L| with order q^r. In particular, L/K is tamely ramified if and only if P_{L/K} = 1.

Figure: Factoring the extension L/K

	~	
(achan	/ (- >rc	ner
	y Gait	mer
-		

The Unramified Case

Suppose now that L/K is unramified. Then, there is a natural isomorphism $G \cong \text{Gal}(k_L/k_K)$ and so G is cyclic generated by the **Frobenius element** $\text{Fr}_{L/K}$ corresponding to the canonical generator of $\text{Gal}(k_L/k_K)$ and characterized by $\text{Fr}_{L/K}(x) \equiv x^q \pmod{\pi_K}$ for every $x \in \mathcal{O}_L$ (where we have identified π_K as a uniformizer of L).

Continuing in this manner lets us describe the Galois group $G_K^{unr} := \text{Gal}(K^{unr}/K)$. Namely, $G_K^{unr} \cong G_{k_K} \cong \widehat{\mathbb{Z}}$ is topologically cyclic with 1 corresponding to Fr_K characterized by $\text{Fr}_K(x) \equiv x^q \pmod{\pi_K}$ for every $x \in \mathcal{O}_{K^{unr}}$ or, equivalently, $\text{Fr}_K|_L = \text{Fr}_{L/K}$ for every finite unramified extension L/K. As above, we call Fr_K the **Frobenius element** of K. Note that K^{unr} is **almost** a local field in the sense that $\mathcal{O}_{K^{unr}}$ is a DVR with perfect residue field $\overline{k_K}$.

ヘロト 人間 とくほ とくほ とうしょう

The Tame Case

What about $G_{\kappa}^{tam} := Gal(K^{tam}/K)$? We have a natural short exact sequence

$$1 \longrightarrow \mathsf{Gal}(K^{\mathsf{tam}}/K^{\mathsf{unr}}) \longrightarrow \mathsf{Gal}(K^{\mathsf{tam}}/K) \longrightarrow \mathsf{Gal}(K^{\mathsf{unr}}/K) \longrightarrow 1$$

Recalling that $K^{\text{tam}} = \bigcup_{\text{gcd}(p,n)=1} K^{\text{unr}}(\pi_K^{1/n})$, we have

$$\mathsf{Gal}({\mathcal{K}}^{\mathsf{tam}}/{\mathcal{K}}^{\mathsf{unr}})\cong\prod_{\ell
eq p}\mathbb{Z}_\ell$$

with topological generator τ_K arising from the generators of $\mathbb{Z}/n\mathbb{Z}$ for gcd(n, p) = 1. Let $\widehat{Fr}_K \in Gal(K^{tam}/K)$ be a lift of $Fr_K \in Gal(K^{unr}/K)$.

Theorem (Iwasawa)

 $Gal(K^{tam}/K)$ is topologically generated by \widehat{Fr}_K and τ_K with sole relation

$$\widehat{\mathsf{Fr}}_{K}\tau_{K}\widehat{\mathsf{Fr}}_{K}=\tau_{K}^{q}.$$

Analogous to before we have a factorization

We call I_K the **absolute inertia group** of K and P_K the **absolute wild inertia group** of K. These are given respectively by inverse limits over $I_{L/K}$ and $P_{L/K}$ for L/K finite Galois. Equivalently, since inverse limits preserve kernels, we have

$$I_K = \ker(G_K \twoheadrightarrow G_{k_K})$$

and

$$P_{K} = \ker(I_{K} \to \overline{k_{K}}^{\times}).$$

Some Success

When K has positive characteristic G_K can be described relatively succinctly as a certain semidirect product of P_K and G_K^{tam} . The key ingredient comes from looking at the maximal pro-p extension K(p) of K with Galois group $G_K(p) := \text{Gal}(K(p)/K)$. In a nutshell, one looks at the Artin-Schreier exact sequence

$$0 \longrightarrow \mathbb{F}_p \longrightarrow K(p) \stackrel{x \mapsto x^p - x}{\longrightarrow} K(p) \longrightarrow 0$$

of $G_{\mathcal{K}}(p)$ -modules and studies the associated long exact sequence.

When K has characteristic 0 things are much more difficult, though a result of Jannsen and Wingberg does give an explicit set of generators and relations in the p-adic case for $p \neq 2$.

Local-to-Global

Fix a number field K. Let L be a finite Galois extension field of K and q a prime of L lying above a prime \mathfrak{p} of K (i.e., $\mathfrak{p} = \mathfrak{q} \cap K$). Denote the associated residue fields by $k_{\mathfrak{q}} := \mathcal{O}_L/\mathfrak{q}$ and $k_{\mathfrak{p}} := \mathcal{O}_K/\mathfrak{p}$. Let $D_{\mathfrak{q}}$ and $I_{\mathfrak{q}}$ denote the associated decomposition and inertia group. We have a natural short exact sequence

$$1 \longrightarrow I_{\mathfrak{q}} \longrightarrow D_{\mathfrak{q}} \longrightarrow \operatorname{Gal}(k_{\mathfrak{q}}/k_{\mathfrak{p}}) \longrightarrow 1$$

which is in fact isomorphic to the short exact sequence

$$1 \longrightarrow \mathit{I}_{\mathcal{L}_{\mathfrak{q}}/\mathcal{K}_{\mathfrak{p}}} \longrightarrow \mathsf{Gal}(\mathit{L}_{\mathfrak{q}}/\mathcal{K}_{\mathfrak{p}}) \longrightarrow \mathsf{Gal}(\mathit{k}_{\mathcal{L}_{\mathfrak{q}}}/\mathit{k}_{\mathcal{K}_{\mathfrak{p}}}) \longrightarrow 1$$

in the sense that we have a commutative diagram

Local-to-Global

This follows from the fact that $\sigma \in D_{\mathfrak{q}}$ induces a commutative diagram

This provides us with one way to define absolute inertia and decomposition subgroups I_p and D_p of G_K .