
Algebra II Homework 8 Commentary

Zachary Gardner

Unless otherwise stated, k denotes a field and Fr the Frobenius map on k (which is defined if k has
prime characteristic p > 0).

General Commentary

� Given a polynomial f(x) ∈ k[x] and a field extension L/k in which f(x) splits, if we know
all of the roots of f(x) in L (including their multiplicities) then we almost know f(x). The
issue is that f(x) may not be monic and so we may need to multiply by some nonzero scalar.
This matters, for instance, when trying to say two polynomials are equal. Namely, if two
polynomials each divide the other then we can only be certain they are the same if both
polynomials are monic.

� It’s true that being separable means having no repeated roots, but it’s important to note
where these roots live. As an extreme example, irreducible polynomials over perfect fields
are separable but also obviously have no roots at all over the ground field (since otherwise
they would be reducible).

� Be careful that polynomials in Fp[x] and the functions Fp → Fp they induce are not one and
the same thing. In particular, there are plenty of nonzero polynomials that vanish at every
point of Fp upon evaluating. In fact, all such polynomials are multiples of xp − 1.

Problem 1

Part (a)

� Remember that if and only if two statements have two directions. Some people only proved
one direction.

� This is a comment for people who prefer to think of separability in terms of having no repeated
roots. In the case that p - n, how do you know that xn− 1 will not have some “non-obvious”
factorization in Fp[x]?

� Note that the roots of the polynomial xn − 1 ∈ Fp[x] need not be contained in Fp. Note also
that xn − 1 need not have n distinct roots – indeed, this problem shows that holds if and
only if p - n. In the case p | n, how many distinct roots does xn − 1 have?

Part (b)

� If a polynomial g(x) ∈ Q[x] is reducible over Q(ζ3) then it is not necessarily true that x2+x+1
(the minimal polynomial of ζ3 over Q) divides g(x). For instance, consider x2− x+ 1, which
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is the minimal polynomial of ζ3 + 1 over Q.

� Let α be a root of f(x) (which lives in some field extension of Q). Some work is needed to see
why Q(α, ζ3) has degree 6 over Q (namely, the result of this problem). By the same token,
the minimal polynomial of α over Q(ζ3) cannot just be assumed to have degree 3 since this
is equivalent to the statement of the problem.

� One way to view this problem is in terms of the extremely useful trick of exchanging the order
of quotients. We are given f(x) ∈ Q[x] irreducible of degree 3. Letting α be as above, the field
Q(α) ∼= Q[x]/(f(x)) is a degree 3 extension of Q. At the same time, Q(ζ3) ∼= Q[y]/(y2+y+1)
is a degree 2 extension of Q. We then have

Q(ζ3)[x]/(f(x)) ∼= (Q[y]/(y2 + y + 1))[x]/(f(x))

∼= (Q[x]/(f(x)))[y]/(y2 + y + 1)

∼= Q(α)[y]/(y2 + y + 1)

upon switching the order of the quotients.1 If we call all of these fields L (which we can do
since they are all isomorphic) then we see that L contains (copies of) both Q(α) and Q(ζ3).
Thus, [L : Q] is divisible by both [Q(α) : Q] = 3 and [Q(ζ3) : Q] = 2 hence divisible by 6
since gcd(2, 3) = 1. This shows that L is “bigger than” both Q(α) and Q(ζ3). Hence, f(x) is
irreducible over Q(ζ3) (and, as a bonus, y2 + y + 1 is also irreducible over Q(α)).

Parts (c)-(e)

� For part (c), be careful that F9 is not the same ring as Z/9Z. In particular, writing things
like 4 and 7 for elements of F9 doesn’t make sense.

� For part (d), several people tried to do this by arguing in terms of gcd. Remember that before
you can say anything about gcd you need to know something about dividing polynomials.
The argument some people had in mind relies on knowing the result of this problem to work
(which is an issue because of circular reasoning).

� For part (d), don’t confuse this statement with that of Gauss’s Lemma (which is a much
stronger result).

� For part (e), simply stating the definition of Galois (in terms of automorphisms) did not get
any points for justification. The same goes for any equivalent definition of Galois.

Problem 2

� This doesn’t need to be done by contradiction since all of the proofs I know of are directly
constructive.

� Let f(x) ∈ k[x] be separable and g(x) be a monic factor. What you should do here is pass
to a field over which f(x) splits completely. Then, g(x) must also split completely since it is
a factor of f(x). Finally, g(x) must have no repeated roots (hence be separable) since f(x)
has no repeated roots (since it is separable).

� Continuing with the above comment, if you first try to work with a field over which g(x)
splits and then pass to some possibly larger field for accommodate f(x) then you will have to

1Note that we can also write these double quotients in terms of a single quotient, namely Q[x, y]/(f(x), y2+y+1).
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deal with compatibility issues. This illustrates one key difference between the “bottom-up”
and “top-down” approaches to field extensions that I described on a previous homework.

� There is a difference between a splitting field for f(x) and a field over which f(x) splits since
the former is minimal in a precise sense.

Problem 3

� Since the things here are just sets (without extra structure) the word bijection should be
probably be used in place of isomorphism.

� I was looking for people to explicitly state that there is a bijective correspondence between
Embk(k[x]/(f(x)), L) and the set of roots of f(x) in L. Note that the result of Homework 7
Problem 7(a) being used here is only stated for monogenic (also called primitive) extensions.
This is why it is extremely important that f(x) is irreducible.

Problem 4

Most of the comments for this problem have to do with (a) =⇒ (b), so let me first briefly state
the remainder of the comments.

� For (b) =⇒ (a), don’t forget the g′(x) part of the chain rule computation.

� Many people forgot to do the very last part of the problem.

Now to discuss (a) =⇒ (b). For convenience, let f(x) = anx
n + · · ·+ a1x+ a0 ∈ k[x].

� Many people correctly stated that f ′(x) = nanx
n−1 + · · · + a1 and then used the fact that

f ′(x) = 0 to deduce that iai = 0 for each 1 ≤ i ≤ n. However, this is where some people then
went astray. What this equation tells us is that either p | i or ai = 0 for each i. This is not
something uniform in i in the sense that which one of these two statements is true depends
on the value of i. In the case that p - i we can cancel the i from iai to deduce that ai = 0.
So, all of the coefficients of f(x) whose index is not divisible by p must vanish. In the case
that p | i we automatically have iai = 0 and so ai can be arbitrary.

� Another common mistake I saw was claiming that Fr will be the identity on k. The fact that
k is perfect means only that Fr is an automorphism. In fact, Fr is the identity map if and
only if k = Fp (in characteristic p, anyway). Even for a perfect field as simple as Fp2 the map
Fr will act in a nontrivial way. You can figure out what this looks like explicitly by writing
Fp2 as the quotient of Fp[x] by an irreducible quadratic.

� Note that f ′(x) = 0 tells us nothing about the constant term a0. This is not a problem since
we can still write a0 = bp0 for some b0 ∈ Fp.

Problem 5

� Since this problem asks for separable minimal polynomials, you need to offer some explanation
for why the proposed minimal polynomials are separable. In particular, you need to say that
irreducible polyonomials over F3 are automatically separable (since F3 is perfect).
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� Most people failed to give a line of explanation for why minA(x) cannot just be an irreducible
quadratic. Perhaps it was too harsh of me to expect this.

� Remember that conjugacy classes are uniquely and completely represented by matrices in ra-
tional canonical form, which generally have more than one invariant factor. Writing down just
the minimal or characteristic polynomial is in general not enough information to determine
a class.

� Did you know there is a relatively quick and painless formula to compute the number of
irreducible monics of a given degree in Fp[x]? If you’ve never heard of Móbius inversion then
you should check it out. If you’re really looking for a challenge then you should check out
the Möbius function ring.

Problem 6

� Many people failed to check the necessary hypotheses of Gauss’s Lemma. In particular,
Gauss’s Lemma only applies once you know that f(x) and g(x) are both monic (which many
people neglected to justify or even state).

� The polynomial Φn(x) only looks “nice” for n relatively simple (e.g., for n prime). In partic-
ular, it is not true that Φn(x) = (xn− 1)/(x− 1) for general n. As an illustration of the fact
that Φn(x) can be complicated (and perhaps going against what you might expect), Φn(x)
need not always have coefficients 0,±1. Can you find the smallest n that verifies this?

Problem 7

The crux of this problem is that factorizations in Z[x] give rise to factorizations in Fp[x]. It is
somewhat miraculous that Φn(x) ∈ Z[x] since it is defined in terms of a big product of complex
numbers. Being able to convert information in Z to information “mod p” is a powerful tool.
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