
Algebra II Homework 4 Commentary

Zachary Gardner

Unless otherwise stated, R denotes a commutative ring with 1 and I denotes an ideal ofR. Similarly,
A ∈ Mn(k) denotes a matrix and f1(x), . . . , fr(x) ∈ k[x] its (monic) invariant factors (so f1 | · · · |
fr). We use parentheses for principal ideals.

General Commentary

� How should we write elements of the quotient R/I? Certainly the elements are cosets r + I
for r ∈ R. While this notation is correct it can often get quite cumbersome and confusing
(since the “+” in r+I is not addition in the ring R). When there is little chance of confusion
it is often better to write r. Then, the equations for addition and multiplication of cosets
look like r + s = r + s and r · s = rs in contrast with (r + I) + (s + I) = (r + s) + I and
(r + I)(s+ I) = rs+ I. This notation also makes it easier to see the R-module structure of
R/I since we can write r · s = rs.

� It’s important to be clear about what we mean by the phrase relatively prime. By definition,
two ideals I, J are relatively prime if I + J = R or, equivalently, we can find elements α ∈ I
and β ∈ J such that α + β = 1. It then makes sense to say that two elements a, b ∈ R are
relatively prime if the ideals they generate are relatively prime – i.e., (a) + (b) = R. For R
a general ring this is the most we can say. For R a PID we can say a little more. Namely,
(a) + (b) = (gcd(a, b)) and so a, b are relatively prime if and only if gcd(a, b) = 1 (it’s worth
thinking carefully about what exactly we mean by gcd).

� Vector spaces don’t have ideals since they aren’t rings. What is true that a vector space over
a field k is the same thing as a k-module, and a subspace is the same thing as a k-submodule.
You should view the notion of module as a generalization of the notion of vector space that
works over any ring.

� Modules don’t have a multiplication and so it doesn’t make sense to talk about 1 and multi-
plicative inverses as elements of a module. What’s confusing about this is that many things
we work with in practice such as R/I have simultaneous ring and module structures.

� Saying that a linear map between vector spaces is not an isomorphism means that it is not
injective or not surjective. In the special case that we have a linear map T : kn → kn (so the
source and target are the same and have finite dimension), the Rank-Nullity Theorem tells
us that T is injective if and only if it is surjective. This is a rather rare property for maps to
have in general.
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Problem 2

Let ϕ : R/(a) → R/(a) be the map given by multiplication by b ∈ R. Then, we can think of this
map in two different ways. The first is that it is multiplication by b+ (a) = b. The second is that
it is the scalar multiplication map associated to b, using the R-module structure of R/(a) with
b · c = bc.

� If b + (a) is a unit in R/(a) then it is not necessarily true that b is a unit in R. For this
reason the inverse of b+ (a) should not be written as b−1 + (a). A better choice of notation
is (b+ (a))−1.

� Even though R/(a) is a ring, the map ϕ is only an R-module homomorphism and not a ring
homomorphism for b 6= 1. This is because ϕ is not compatible with multiplication.

� It’s not a valid tactic to use Problem 3 for proving (c) =⇒ (a) unless your proof for Problem
3 does not use Problem 2 (which I would say is unlikely).

Problem 3

Let ϕ denote multiplication by f(x) on the quotient k[x]/(q(x)).

� There was some confusion about what part (a) means. Part (a) is saying that f(x) | q(x) if
and only if f(x) and q(x) are not relatively prime. This is because f(x) is irreducible. Its not
clear from the problem statement if Keerthi wanted people to comment on the equivalence
of these two statements.

� Problem 2 does have a part to play here but is a statement about ideals. Since this problem
needs a statement about elements you need to show the process of translating between the
two statements to get full points.

� A multiplication map like ϕ need not be surjective. For an example using Z consider multi-
plication by 2 on Z/4Z.

� In the case that f(x) | q(x) and so q(x) = f(x)g(x) for some g(x) ∈ k[x], many people failed
to explain why g(x) is a nontrivial element of kerϕ. It’s not enough to say that g(x) 6= 0 as
a polynomial. On a related note, saying that two coset representatives are different is not
enough to say that the cosets they represent are different.

Problem 4

� Keep in mind that A may not be diagonalizable. Just because we can find one eigenvalue
does not mean we can find an eigenbasis.

� Remember that we define the minimal and characteristic polynomials of A to be minA(x) :=
fr(x) and chA(x) := f1(x) · · · fr(x). Arguments using other conventions did not receive full
points for this problem set.

� Take heed that k[x]/(chA(x)) is not isomorphic to k[x]/(f1(x))× · · · × k[x]/(fr(x)). Indeed,
the polynomials f1(x), . . . , fr(x) are by definition not pairwise relatively prime!

� One detail many people missed is exactly what is happening with k-pairs in this problem.
The action of x− λ on Vf1 × · · · × Vfr corresponds to the action of TA− λ id on VA by virtue

2



of the isomorphism of k-pairs Vf1 × · · · × Vfr ∼= VA with the action of x (by multiplication)
corresponding to the action of TA. If x−λ acts non-injectively on some Vfi then it acts non-
injectively on Vf1 × · · ·×Vfr since we can stick the nontrivial element of the kernel in the ith
slot (and put 0’s everywhere else). Conversely, if x−λ acts non-injectively on Vf1 × · · · ×Vfr
then it acts non-injectively on some Vfi since something “nontrivial” must be happening in
at least one of the slots (this is a somewhat heuristic argument that you should try fleshing
out for yourself).

� Your argument for (d) =⇒ (a) should pretty much be the reverse of the one for (b) =⇒
(c). Note that minA(λ) = 0 and minA(λ id) = 0 are very much not the same statement! The
former is a statement about elements of k and the latter is a statement about either elements
of Mn(k) or linear maps from kn to itself.

Problem 5

� While Problem 4 is closely related to Problem 5, we can’t directly use Problem 4 in general
here since minA(x) may not factor completely into linear factors (or factor at all, for that
matter. . . ).

� Many people forgot to say something about the characteristic polynomial chA(x). This is
understandable because of how the problem was formatted on the problem set.

� This problem has three different but closely related objects floating around: p(x), p(A), and
p(TA). These are, respectively, a polynomial, a matrix, and a k-linear endomorphism (k-linear
map with the same domain and codomain). The endomorphism p(TA) is the endomorphism
of VA induced by p(A) and, conversely, p(A) is the matrix representation of p(TA) with
respect to the standard basis on VA. Analogous to Problem 4 the action of p(TA) on VA
corresponds to the action of p(x) on Vf1 × · · · × Vfr by way of the isomorphism of k-pairs
Vf1 × · · · × Vfr ∼= VA.

� It’s true that (b) =⇒ (a) can be reduced to showing that minA(A) = 0 in Mn(k) but this a
nontrivial statement that still requires proof.

� It’s not immediate that matrix factorizations give rise to polynomial factorizations, since the
evaluation map from polynomials to matrices forgets some information. More specifically, we
have an evaluation map ev : k[x]→Mn(k) given by p(x) 7→ p(A). What is the kernel of this
map? Precisely the principal ideal (mA(x)) by virtue of this problem.

Problem 6

� If you did not use the definition of determinant given on this problem set then you did not
receive full points for this problem. Many facts about determinants require careful proof
depending on the definition you choose. For example, why is the determinant multiplicative
and why do cofactor expansions work?

� It’s a general fact that a polynomial in k[x] has a root at 0 if and only if its constant term
vanishes.

� For this problem it’s not so helpful to try to reason in terms of nonzero eigenvalues.

� If det(A) 6= 0 then we can use chA(A) = 0 to explicitly find an inverse for A.
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� If det(A) = 0 then we can use chA(A) = 0 to get Af(A) = 0 for some f(x) ∈ k[x]. Is this
enough to conclude that A is not invertible in Mn(k)?

Problem 7

� The computations for this problem are much easier if you reduce mod 5 along the way.

� Note that (x− 2)2 and (x− 3)2 are not allowed as invariant factors since they don’t divide
the minimal polynomial.

� The linear factors x− 2 and x− 3 are not both allowed to be invariant factors since neither
divides the other.

� The trace of the polynomial (x2 + 1)2 is 0 since you are looking at the coefficient of the x3

term.

� Remember that the sum of the degrees of the invariant factors must be 4 for this problem.

� For diagonalizability it is not enough for the minimal polynomial to split into linear factors
since these factors must also be pairwise distinct.

Problem 8

It is an important yet subtle point here that R is commutative since this allows us to exchange the
order of scalar multiplication. For ease let ϕ be the isomorphism from M to N .

Part (a)

� Part of proving that M tors is a submodule is showing that it is a group under addition.

� For showing that M tf is torsion-free, there is no need to use contradiction since we can just
show directly that the only torsion element of M tf is 0.

Part (b)

� We have M tf = M/M tors by definition. An equation like M tors = M/M tf makes no sense
since M tf is not a submodule of M . I should note, however, that there is a way to make some
sense of this in general using the notion of “splitting.”

� If you are trying to show that ϕ(M tors) = N tors remember that you need to check containment
both ways.

� One way of going about this is to show that ϕ−1 carries N tors into M tors and so the restriction
of ϕ to M tors is an isomorphism onto N tors. Note that it’s really a miracle that ϕ−1 is itself
a homomorphism (if you’re familiar with topology then this is not something you can expect
from bijective continuous maps).

� Checking the second half of the problem about the torsion-free parts of M and N is something
that needs to be done explicitly and is not just “clear.” One way to handle this is to define
an explicit isomorphism ϕ : M tf → N tf using ϕ : M → N . The “obvious” thing to try is
ϕ(m+M tors) := ϕ(m) +N tors. One must then check that this is well-defined, injective, and
surjective. The homomorphism ϕ fits into a commutative diagram
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M N

M tf N tf

ϕ

ϕ

with vertical arrows given by quotient projection maps.

Part (c)

� This problem is one of the ingredients that goes into proving the fundamental theorem for
finitely generated modules over PIDs, so you certainly can’t use it to prove this problem.

� Infinite products of torsion rings need not be torsion. So you need to briefly explain why
finite products of torsion rings are torsion.
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