
Algebra II Homework 4 Commentary

Zachary Gardner

Problem 1

(a) A subtle but important point here is that invariant factors are required to be monic. If
we were to remove this requirement then rational canonical form would not be unique and
it would be possible for a degree 1 polynomial to divide another degree 1 polynomial with a
different constant coefficient.

(b) Even though Z/nZ is not a PID it is true that every ideal is principal. In fact, every quotient
of a PID has this property (can you see why?).

(c) The key to prime elements in a general commutative ring R not being irreducible is the
presence of (nonzero) zero divisors. We can rule this out by requiring R to be an integral
domain.

(d) The only way to get full points for this one is to give an explicit counterexample. Note that
it’s not immediately obvious that the union of two ideals is an ideal if and only if one ideal
contains the other (though it is true!).

Problem 2

� Checking commutativity under addition is overkill since this is automatic from the ring
structure of R.

� The problem does not specify that R is commutative but it’s fine if you assumed this. Re-
gardless, the result remains true for non-commutative R as we long as we specify that each
ideal in the chain is a left, right, or two-sided ideal.

� Once you are closed under addition and scaling by R then you are automatically closed under
subtraction and contain 0 (be sure to distinguish between the additive and multiplicative
identity).

� It is not true that a finite union of ideals is an ideal (hence the same is true for infinite
unions).

� It is true that a finite union of a chain of ideals is an ideal, since the union is just the ideal
at the end of the chain.

� Induction does not allow us to deduce that an infinite union of a chain of ideals is an ideal
from the finite case. The problem is that a chain of arbitrarily large finite length is not the
same thing as a chain of infinite length.
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Problem 3

Don’t forget about the zero matrix! Rational canonical form is something that only works for
nonzero matrices.

Problem 4

Part (a)

� This is not just trivial! The key is proving that if a(x), b(x) ∈ k[x] with a(x) | b(x) in L[x]
then a(x) | b(x) in k[x]. We will sketch two proofs of this for clarity.

� Here’s the first proof. By assumption we have b(x) = a(x)p(x) for some p(x) ∈ L[x] (crucially
this may not a priori be an element of k[x]). Using the division algorithm for k[x] we may
choose q(x), r(x) ∈ k[x] such that deg r(x) < deg a(x) and b(x) = a(x)q(x) + r(x). Then,
r(x) = a(x)(p(x)− q(x)) and the degree condition forces p(x)− q(x) = 0 =⇒ p(x) = q(x).

� Here’s the second proof. Once again by assumption we have b(x) = a(x)p(x) for some
p(x) ∈ L[x]. We may write

a(x) = αnx
n + αn−1x

n−1 + · · ·+ α0 ∈ k[x]

p(x) = βmx
m + βm−1x

m−1 + · · ·+ β0 ∈ L[x]

b(x) = γm+nx
m+n + γm+n−1x

m+n−1 + · · ·+ γ0 ∈ k[x].

We then have

γ0 = α0β0 =⇒ β0 = α−10 γ0 ∈ k
γ1 = α0β1 + α1β0 =⇒ β1 = α−10 (γ1 − α1β0) ∈ k

...

and so we see by induction that p(x) ∈ k[x]. There is of course a slight difficulty if α0 = 0 but
this can be dealt with without too much work by writing a(x) = xva′(x) for v > 0 sufficiently
large and a′(x) having nonzero constant coefficient.

� An abstract way of viewing all of this is that the inclusion map k[x] ↪→ L[x] induces a
well-defined injective homomorphism k[x]/(a(x)) ↪→ L[x]/(a(x)).

Parts (b) and (c)

� For part (b), one way of viewing things is in terms of the function RCFF : Mn(F )→Mn(F )
that takes a matrix defined over F to its rational canonical form. For k ⊆ L a field extension,
the statement of part (b) is equivalent to the statement that RCFk is the restriction of RCFL
to Mn(k) ⊆Mn(L).

� For part (c) stuff with rational canonical form technically doesn’t cover the case of the zero
matrix (but this is easily dealt with).
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Problem 5

Part (b) =⇒ Part (c)

You still need to provide some explanation even though the hint says this is trivial. Mentioning
the factoring triangle is sufficient. In general, the rule of thumb for hints on problem sets is that
they are sketchy on purpose and so you should justify whatever claims are made in the hint.

Part (c) =⇒ Part (a)

The main point is to note that there is some subtlety when generalizing from the n = 2 to the
n > 2 case. Letting

ϕ : R� R/I1 × · · · ×R/In, r 7→ (r + I1, . . . , r + In),

suppose we choose r1, . . . , rn ∈ R such that

ϕ(r1) + (1 + I1, I2, . . . , In), . . . , ϕ(rn) = (I1, I2, . . . , 1 + In).

Then, r := r1 + · · ·+ rn satisfies

ϕ(r − 1) = 0 =⇒ r − 1 ∈ kerϕ =
n⋂
i=1

Ii

and so we have r + a = 1 for some a contained in every Ii. By construction we have ri ∈
⋂
j 6=i Ij

and so for i 6= j we have ∑
k 6=i rk

∈Ii

+ (ri + a)

∈Ij

= r + a = 1.

This shows that Ii, Ij are relatively prime. The end result can be checked more simply by consid-
ering each ri separately, but the advantage of the above approach is that we uniformly get coprime
elements that work for all i 6= j. This is a stronger result.

Problem 6

� Not that the k-pairs Vx × Vx and Vx2 are not isomorphic as k-pairs even though they are
isomorphic as k-vector spaces (since both have dimension 2 over k). This is because multi-
plication by x is the zero map on Vx (hence induces the zero map on Vx × Vx) but not on
Vx2 .

� In line with the above comment, it’s worth unpacking precisely what the problem statement
means. The problem asks us to prove that every k-pair is isomorphic to

k[x]/(q1(x)r1)× · · · × k[x]/(qt(x)rt) (1)

for q1(x), . . . , qt(x) ∈ k[x] monic irreducible and r1, . . . , rt ∈ Z≥1 such that the set

{q1(x)r1 , . . . , qt(x)rt}

is unique up to permutation. Here, set should be understood to mean multi-set – i.e., we
allow duplicate entries. This way k[x]/(x) × k[x]/(x) is a valid k-pair distinct from both
k[x]/(x) and k[x]/(x2).
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� Suppose that f1(x) | · · · | fm(x) are the invariant factors of a given k-pair. Then, the poly-
nomials fi(x) and fj(x) are not relatively prime since one divides the other by construction.
For the same reason it is common for at least one invariant factor to not be irreducible.
Indeed, if invariant factors were always irreducible then over C minimal polynomials could
only be linear (degree 1)!

� Proving uniqueness of the expression in (1) requires both uniqueness of invariant factors
and uniqueness of prime factorization for non-constant polynomials in k[x]. The Chinese
Remainder Theorem (CRT for short) tells us how to connect the two, giving us a way to
“collapse down” and “expand” k-pairs.

� This problem shows that we have a well-defined and unique elementary divisor decomposition
for k-pairs. This is closely related to but not the same as the invariant factor decomposition,
which itself exists and is unique. Note that the invariant factor decomposition is a special
case of the so-called Smith normal form (which is defined even for non-square matrices).

Problems 7 and 8

� Be careful to distinguish between rational canonical form and Jordan canonical form. In
particular, take heed that every diagonal matrix is in Jordan canonical form but diagonal
matrices are rarely in rational canonical form (this only happens if all diagonal entries are
the same).

� Some people worked with minimal and characteristic polynomials using different definitions
than the ones given on this problem set. For us, the minimal polynomial is defined to be
the largest invariant factor while the characteristic polynomial is defined to be the product
of all of the invariant factors. For a perhaps more familiar perspective on these notions look
at Problems 4 and 5 on Homework 5.

� Problem 7 can be proven using Problem 8.

� Some students misinterpreted the statement of Homework 3 Problem 6, which says that
a matrix A ∈ Mn(k) is diagonalizable if and only if there is an isomorphism of k-pairs
VA ∼= Vx−α1 × · · · × Vx−αn for some α1, . . . , αn ∈ k. The key here is that the scalars αi don’t
have to be distinct. This is because diagonal matrices can have repeated diagonal entries
(which correspond to eigenvalues with algebraic multiplicity greater than 1).

� Let’s say A ∈Mn(k) is diagonalizable, so VA ∼= Vx−α1 × · · · × Vx−αn for some α1, . . . , αn ∈ k.
By regrouping as necessary we get

VA ∼= V c1
x−λ1 × · · · × V

cr
x−λr

for λ1, . . . , λr ∈ k distinct and c1, . . . , cr ∈ Z≥1. Using the argument of Problem 6 we get
from this minA(x) = (x − λ1)e1 · · · (x − λr)er for some e1, . . . , er ∈ Z≥1. How do we know
each ei = 1? While it’s certainly true that minA(x) divides the characteristic polynomial
chA(x) = (x− λ1)c1 · · · (x− λr)cr , the latter may not be square-free and so we need to work
a little harder. The key is that VminA(x) must appear as a product factor of VA by virtue of
the invariant factor decomposition. Having some ei > 1 would violate the uniqueness part of
Problem 6 since V(x−λi)ei and V ei

x−λi are not isomorphic as k-pairs.
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Problem 9

� Remember that you can’t divide by 0 in the division algorithm. This is a missing condition
in the definition of norm given on this problem set.

� Note that the usual division algorithm for Z you are probably familiar with only deals with
positive integers. I was looking for some justification as to why the general (potentially
negative) case follows from the positive case.

� The word “norm” is unfortunately one of those math words that has a thousand different
meanings. We don’t require a Euclidean norm to satisfy the triangle inequality.

� The degree-sum formula deg(fg) = deg(f) + deg(g) does work for all f, g ∈ k[x] (even 0)
under the conventions that deg(0) = −∞ and −∞+ a = −∞ for every a ∈ Z.

� Some people lost points for failing to give some explanation for why the division algorithm
works for k[x]. Saying to “just do polynomial long-division” won’t work since that’s just
another name for the division algorithm. Note that a choice of remainder won’t be unique
unless you specify that it has to be monic.

� The well-ordering principle (affectionately termed WOP) is the statement that any nonempty
set of positive integers has a least element. This is useful for proving any division algorithm,
whether for Z, k[x], or Z[i].

� One subtle point that makes the division algorithm work for Z[i] is the fact that the function
N : Z[i] → Z≥0 given by a + bi 7→ a2 + b2 extends to a function N : C → Z≥0 such that
N(α) = 0 ⇐⇒ α = 0 and N(αβ) = N(α)N(β) for all α, β ∈ C.

� There are several ways to view the geometry of this problem. Keerthi’s solution thinks about
how far a point inside the unit square can be from one of the corners. Another way to think
about the problem is to note that the square root of N : C → Z≥0 gives us the Euclidean
distance function if we think of C as R2. More specifically, the distance between points (a, b)
and (c, d) in R2 is √

(a− c)2 + (b− d)2 =
√
N((a+ bi)− (c+ di)).

Given β ∈ Z[i] with β 6= 0, the ideal βZ[i] forms a lattice in C if we once again view C as R2.
Geometrically, the division algorithm says that, given any point α on the square lattice Z[i],
we can find a point βq on the lattice βZ[i] such that α is contained within the disc of radius√
N(α) centered at βq.

� Summarizing the above, the division algorithm for Z[i] allows us to cover the lattice Z[i]
by circular discs centered at points of some smaller lattice. One could imagine trying to do
something similar for Z[

√
d] with d ∈ Z square-free. It turns out then that the picture involves

trying to cover points of a lattice by elliptical discs or even the interiors of hyperbolae. This
is a simple manifestation of something called the geometry of numbers or Minkowski theory.

Problem 10

� It’s important to state things clearly! For example, “Let a be an element in I with minimal
positive norm.” Symbolically this can be written as min{N(i) 6= 0 : i ∈ I}. You should not
define this as min{N(i) : 0 6= i ∈ I} even though the two are technically equal by the first
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property of Euclidean norms. Along the same line, note that we automatically have a 6= 0
and so we can actually perform the division algorithm with respect to a.

� When doing division with respect to a and getting a remainder r ∈ I with N(r) < N(a),
the right way to go is not to say N(r) ≥ N(a) and call contradiction. Instead, since N(a) is
minimal positive we must have N(r) = 0 which in turns forces r = 0.
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