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1 Beginnings

1.1 Introduction

The goal of these notes is to prove the Mordell-Weil Theorem for abelian varieties over global fields.
In its most basic form, the Mordell-Weil Theorem states that the set E(Q) of Q-rational points of
an elliptic curve E is a finitely generated abelian group. By the structure theorem for such groups,

E(Q) ∼= Zr ⊕ E(Q)tors

with E(Q)tors torsion and r ≥ 0 the rank of E. Much of arithmetic geometry, number theory, and
cryptography has centered around the study of E(Q) and r. It is therefore fair to say that the
Mordell-Weil Theorem is a result of much importance. With basic motivation in place, we turn to
the statement of the Mordell-Weil Theorem.

Theorem 1.1.1 (Mordell-Weil). Let k be a global field and A an abelian variety over k. Then,
A(k) is a finitely generated abelian group.

Part of the wisdom of number theory is that number fields (i.e., finite extensions of Q) and global
function fields (i.e., finite extensions of Fq(t) or, equivalently, function fields of algebraic curves
over Fq) behave very similarly in many different situations. As such, we collectively refer to both
types of fields as global fields. Soon we will define precisely what we mean by abelian variety.
For now, think of an abelian variety as a variety that also carries a group structure.

Our strategy for proving the Mordell-Weil Theorem will rest on two key results. The first of these,
the Weak Mordell-Weil Theorem, is handled in Section 5. The second of these, which concerns
the construction of a suitably well-behaved bilinear pairing 〈·, ·〉 : A(k) × A(k) → R, is handled
in Section 6. The main reference for these notes is [Con15]. We also draw heavy inspiration from
[Bha17], which is in turn patterned off of Mumford’s classic Abelian Varieties.1 We assume the
reader is familiar with algebraic number theory as presented in chapters 1-2 of [Neu99] as well
as algebraic geometry as presented in chapters 1-7 of [Liu02]. The next few subsections contain
notational and conceptual preliminaries. The actual theory starts in Section 2.

1.2 Category Theory

Sans serif will generally be used to denote the names of categories – e.g., Ab is the category of
abelian groups. Given a category C and objects X,Y in C, MorC(X,Y ) will be used to denote the
set of morphisms from X to Y . If C is additive then we may instead write HomC(X,Y ). We write
Cop for the opposite of C. Given another category D, Fun(C,D) denotes the corresponding functor
category – i.e., the category whose objects are morphisms from C to D and morphisms are natural
transformations. P(C) := Fun(Cop,Set) is the category of presheaves (of sets) on C, where Set is
the category of sets. A functor F in P(C) is representable if there is an object X of C such that
F ∼= MorC(•, X) in P(C). In this situation, we say X represents F .2

1[Bha17] also includes an enlightening treatment of the theory of Fourier-Mukai transforms and derived categories
of coherent sheaves on abelian varieties.

2It is important to remember that we need more data than just X for representability.
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1.3 Algebraic Geometry

Unless otherwise stated, k denotes a field. Given such a k, fix once and for all compatible choices
of algebraic closure k and separable closure ks – i.e., ks ⊆ k. All separable and algebraic extensions
of k should be assumed compatible with these choices.

Mathscript will generally be used for line bundles – e.g., L and P.

We let Sch denote the category of schemes. Given a scheme S, we let SchS denote the category
of S-schemes – i.e., the over category of schemes over S.3 Given S-schemes X and T , we let XT

denote the base change X ×S T . If either S or T is affine then we may replace them by their
underlying ring in notation. For example, if S = Spec k then X ×S T becomes X ×k T . The
subscript on the fiber product may be dropped if it is clear from context or doing so makes things
less cluttered.

Fix a scheme X and consider the following.

• Let |X| denote the underlying set of X. Unless otherwise stated, it is assumed that |X| 6= ∅.
Note that, in general, |X × Y | is not in bijection with |X| × |Y |.

• Let ModOX
denote the abelian category of (left) OX -modules. This has full abelian subcat-

egories QCoh(X) and Coh(X) of quasi-coherent and coherent OX -modules, respectively.

• Let hX = MorSch(•, X) denote the functor-of-points of X. This resides in P(Sch) and
encodes the same data as X by Yoneda’s Lemma. We refer to objects in P(Sch) or the
closely related category Fun(CRing,Set) as spaces.

• Given F a sheaf of abelian groups on X, let H i(X,F ) denotes the ith sheaf cohomology
group of F . One may think of this as the ith cohomology of RΓ(X, •) or as the ith Čech
cohomology group of F .

• Let ωX denote the canonical sheaf of X.4 Assuming X ∈ SchS , let ΩX/S = Ω1
X/S denote

the sheaf of Kähler differential 1-forms. Assume S = Spec k and let x ∈ X be any k-point.
Let TX/k,x = TX,x = TxX denote the (k-linear) tangent space of X at x. Note that ΩX/k,x

and TX/k,x are canonically dual. Given f : X → Y a morphism of k-schemes and letting
y = f(x) ∈ Y , there is an associated k-linear map df : TX/k,x → TY/k,y.

Given a scheme X, we let Pic(X) denote the Picard group of X – i.e., the abelian group consisting
of isomorphism classes of line bundles on X whose group structure is encoded by tensor product.
This is the same as the sheaf cohomology group H1(X,O×X). If X = SpecR is affine then we may
write Pic(R) instead of Pic(X). If R is a Dedekind domain then this is the same as the (ideal) class
group of R – i.e., the abelian group obtained as the quotient of the group of fractional ideals of R
by its subgroup of principal fractional ideals. For X a curve, we let Pic0(X) denote the subgroup
consisting of isomorphism classes of line bundles of degree 0.

Fix a scheme X and let F ∈ QCoh(X). We say that F is globally generated or generated by
global sections if, for every x ∈ X, the canonical homomorphism φx : F (X)⊗OX(X)OX,x → Fx

is surjective. Equivalently, there exists a sheaf surjection O⊕IX � F for some index set I. Given
S ⊆ F (X), F is S-globally generated or globally generated by S if, for every x ∈ X, the
restriction of φx to S is surjective. Equivalently, there is a sheaf surjection O⊕IX � F . Finally,

3Note that S is the terminal object of this category.
4Note that this may not exist in general.
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given d ≥ 1, we say that F is d-globally generated or generated by d global sections if there
exist sections s1, . . . , sd ∈ F (X) such that F is {s1, . . . , sd}-globally generated.

Let X be a scheme and L a line bundle on X. We say that L is ample if, given F ∈ Coh(X),
F ⊗ L ⊗n is globally generated for every n � 0. If X is an S-scheme, we say that L is very
ample (relative to S) if there exists E ∈ QCoh(S) and i : X ↪→ P(E ) a locally closed embedding
of S-schemes such that L ∼= i∗OP(E )(1). If S = SpecR then it suffices that there be a closed
embedding i : X ↪→ PnR for some n > 0. Note that very ample line bundles are always ample. If
X is separated of finite type over an affine base and L is ample then L ⊗n is very ample for every
n� 0.

1.4 Number Theory

Given a global field k, denote the set of (archimedean and nonarchimedean) places of k by Σk.
5

Given v ∈ Σk, denote the completion of k at v by kv. Thinking of v as an absolute value on kv,
there is an associated normalized absolute value ‖·‖v := vεv on kv, where

εv :=

{
2, v is complex ⇐⇒ kv ∼= C,
1, otherwise.

We let Γ := Gal(ks/k) denote the absolute Galois group of k, which is naturally a profinite group
built up from the Galois groups of finite Galois extensions of k. Similarly, given any Galois extension
K of k, we let ΓK := Gal(ks/K) denote the profinite Galois group of K. Given v ∈ Σk and w ∈ ΣK ,
we write w | v in the case that w extends v (such extensions always exist but need not be unique).

Switching gears, let S ⊆ Σk be a finite set of places containing the archimedean places. Define the
ring of S-integers of k to be

Ok,S := {a ∈ k : v(a) ≥ 0 for every v 6∈ S},

which is a Dedekind domain with fraction field k. The S-unit theorem says that O×k,S is a finitely
generated abelian group. Similarly, the S-class number theorem says that Pic(Ok,S) is a finite
abelian group. As a result, O×k,S/(O

×
k,S)m is finite for every m ∈ Z>0 since it is necessarily torsion.

1.5 Group and Étale Cohomology

Our proof of the Weak Mordell-Weil Theorem will make use of group and étale cohomology. Our
discussion here begins with a review of basic notions and notation for group cohomology. Fix G a
finite group. Let ModG denote the category of (left) G-modules, which is equivalent to the abelian
category ModZ[G]. Given aG-moduleM , letH•(G,M) denote the cohomology ofG with coefficients

in M , obtained as the derived functor cohomology of •G : ModG → Ab applied to M . Given H ≤ G,
functoriality yields a restriction map Res : H•(G,M) → H•(H,M) induced by H ↪→ G. If in
addition H E G then functoriality also yields an inflation map Inf : H•(G/H,M) → H•(G,M)
induced by G� G/H. There is an associated inflation-restriction sequence

0 H1(G/H,M) H1(G,M) H1(H,M)Inf Res

5Note for the sake of intuition that Q has only one archimedean place and Fq(t) has no archimedean places.
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whose exactness may be verified either directly or as a consequence of the degeneration of the
associated Lyndon-Hochschild-Serre spectral sequence.

Group cohomology generalizes to the setting of profinite groups. Fix G a profinite group (e.g.,
G = Γk for any field k). The notion of a (left) G-module M is the same as in the finite group case
except that the action of G on M is also required to be continuous. We can talk about G-group
cohomology for discrete G-modules – i.e., G-modules M such that M is a filtered colimit of MH

for H ranging over the open normal subgroups of G (which are the same as the finite index closed
normal subgroups). We then define

H•(G,M) := colim−−−→H•(G/H,MH)

ranging over the open normal subgroups. This generalized group cohomology is suitably functorial
and we obtain versions of inflation, restriction, and the inflation-restriction exact sequence. In
either case, H1(G,M) admits an explicit description as 1-cocycles mod 1-coboundaries, where a
1-cocycle is a continuous crossed homomorphism ξ : G → M (i.e., ξgh = ξg + g · ξh for every
g, h ∈ G) and a 1-coboundary is a function G→ M determined by g 7→ g · a− a for some a ∈ M .
Thus, if M is a split G-module in the sense that G acts trivially on M then H1(G,M) may be
identified with the group Homcont(G,M) of continuous homomorphisms.

Shifting our discussion to étale cohomology, we begin with some general categorical preliminaries.
A site is the data of a category C together with a set Cov(C) (called a Grothendieck topology)
of families of morphisms {Ui → U}i∈I with fixed target that contains all isomorphisms in C, is
closed under pullback, and is closed under composition in the sense that if {Ui → U}i∈I is a family
in Cov(C) and {Vij → Ui}j∈Ji is also a family in Cov(C) for every i ∈ I then {Vij → U}i∈I,j∈Ji is
a family in Cov(C). A sheaf (of sets) on a site (C,Cov(C)) is a presheaf F (of sets) on C (so an
element of P(C) defined as before) such that the natural map

F (U)→ Eq

∏
i

F (Ui)⇒
∏
i,j

F (Ui ×U Uj)


is an isomorphism for every family {Ui → U}i∈I in Cov(C). These sheaves form a category called
a Grothendieck topos. In most situations which we will care about, such as the étale setting
described below, the functor-of-points hX = MorC(•, X) associated an object X in C defines a
sheaf on the chosen site associated to C.

There are many interesting and useful Grothendieck topologies that appear in practice, such as the
fppf, syntomic, smooth, étale, and Zariski topologies (only the last one is an honest topology in
the usual sense). Both the étale and Zariski topologies give rise to small and big variants of a site
obtained by varying the underlying category C but keeping the same procedure for building Cov(C).
Enter the notion of étale covering. An étale covering of a schemeX is a family {fi : Xi → X}i∈I of
étale morphisms such that X =

⋃
i∈I fi(Xi). Fix a scheme S. The big étale site (SchS)ét consists

of all étale coverings of all S-schemes. The small étale site Sét consists of all étale coverings
of all étale S-schemes.6 The associated Grothendieck topos Shv(Sét) of sheaves of abelian groups
is an abelian category. Given F an étale sheaf of abelian groups on S, let H•ét(S,F ) denote the
étale cohomology of F over S, obtained as the derived functor cohomology of the global section

6Technically, we need to carry out a refinement procedure in each case to ensure that Cov(C) is actually a set.
The details do not matter for our purposes and so we say nothing further about this.
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functor Γ : Shv(Sét)
op → Ab applied to F . Note that, given A a k-scheme, there is a canonical

identification
H i

ét(Spec k,A) ∼= H i(Γ, A(ks))

for every i and so we let H i(k,A) denote either group.

2 Group and Abelian Schemes

2.1 Group Schemes

Let S be a scheme. An S-group scheme is a group object in SchS – i.e., an S-scheme G together
with morphisms m : G ×S G → G, i : G → G, and e : S → G such that the following diagrams
commute:

(Associativity)

(G×S G)×S G G×S (G×S G)

G×S G

G

∼=

m×idG idG×m

m

(Identity)

G×S S G×S G S ×S G

G

idG×e

pr1
m

e×idG

pr2

(Inverses)

G G×S G

S

G G×S G

∆

i×idGidG×i

e

m

In the above, ∆ : G → G ×S G denotes the (canonical) diagonal morphism and pri denotes a
(canonical) projection morphism. By Yoneda’s Lemma, this is the same data as a group structure
on the functor-of-points hG of G – i.e., for every S-scheme T a group structure on G(T ) that is
functorial in T . Equivalently, there is a factorization

Schop
S Set

Grp

hG
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where the solid unmarked arrow is forgetful. We say that G is commutative if there is a factor-
ization

Schop
S Set

Ab

hG

which is equivalent to requiring that G is pointwise invariant under the action of conjugation.

Remark 2.1.1. The notion of a group scheme is relatively well-behaved. For example, products
and base changes of groups schemes are both themselves group schemes.

Example 2.1.2. The following are important examples of S-group schemes. We assume for sim-
plicity that S = SpecR is affine.

(1) The additive group scheme Ga,S = Ga has functor-of-points

Ga(T ) := OT (T ) = Γ(T,OT )

and is represented by SpecR[t].

(2) The multiplicative group scheme Gm,S = Gm has functor-of-points

Gm(T ) := OT (T )× = Γ(T,O×T )

and is represented by SpecR[t±1].

(3) The group scheme of mth roots of unity µm,S = µm has functor-of-points

µm(T ) := {f ∈ Gm(T ) : fm = 1}

and is represented by SpecR[t]/(tm − 1). Its behavior depends heavily on the characteristic
of R.

Note that all of these group schemes are commutative.

A morphism of S-group schemes7 is an S-morphism φ : G→ H such that the diagram

G×S G H ×S H

G H

φ×φ

mG mH

φ

commutes. In this way, S-group schemes form their own (non-full) subcategory of SchS . As with
usual group homomorphisms, we deduce that φ ◦ eG = eH and φ ◦ iG = iH ◦ φ. Similarly, G
is commutative if and only if inversion i : G → G is a morphism of S-group schemes. Given
φ : G→ H a morphism of S-group schemes, kerφ is described as a space via

(kerφ)(T ) = ker(φ(T ) : G(T )→ H(T )),

where T ∈ SchS . This space is represented by the S-scheme fiber product of

7Common alternative names include S-group homomorphism or simply S-homomorphism.
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S

G H

eH

φ

which is a locally closed subscheme of G. It follows that kerφ is a well-defined S-group scheme.8

Proposition 2.1.3. Let G be a k-group scheme. Then, there exists a canonical closed k-subgroup
scheme G0 of G such that

(1) G0 ↪→ G is a flat closed embedding;

(2) |G0| is the connected component of the identity of G;

(3) G0 is geometrically irreducible and quasi-compact.

The scheme G0 is constructed by taking |G0| to be the connected component of the identity in G
and then attaching the associated canonical scheme structure built up affine locally.9 The notation
G0 is meant to suggest the relationship of G0 with the identity element of G. Note that there is
an isomorphism of tangent spaces TeG

0 ∼= TeG.

2.2 Abelian Schemes and Varieties

Definition 2.2.1. An abelian scheme over a scheme S is a smooth, proper S-group scheme
A with geometrically connected fibers.10 If S = Spec k then we call A an abelian variety. A
morphism of abelian S-schemes is just a morphism of the underlying S-group schemes.

It is fruitful to think of abelian schemes as families of abelian varieties over an appropriate base.

Remark 2.2.2. Note that morphisms of abelian schemes are always proper. To see this, let f :
A→ B be a morphism of abelian S-schemes and factor f via the commutative diagram

A B

A×S B

f

Γf
pr2

where Γf is the graph morphism associated to f . Since the structure morphism B → S is separated,
∆Y/S : Y → Y ×S Y is a closed embedding and so Γf is a closed embedding hence proper. The
structure morphism A → S is proper and so pr2 is proper. It follows that f is proper since
properness is preserved under composition. As a result, ker f → S, obtained as a base change of
f , is proper and thus quasi-compact. Moreover, f is finite if and only if it has finite fibers if and
only if ker f is a finite group scheme (as seen by translation).

It follows immediately that the base change of an abelian scheme is an abelian scheme. Given
A/k an abelian variety, A is locally of finite type over Spec k by assumption and so is locally
Noetherian by Hilbert’s Basis Theorem. It follows that A is Noetherian since it is quasi-compact

8The situation for cokernels is a lot more delicate.
9See [aut, Tag 047J] for details.

10We will see below that abelian schemes are commutative. The term “abelian” here is a reference to the mathe-
matician Niels Henrik Abel.
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by assumption.11 A is geometrically integral since a normal ring whose spectrum is connected is a
domain. The condition that the fibers of A be geometrically connected may be relaxed to them be-
ing connected since any connected k-scheme with a k-rational point is automatically geometrically
connected.12 The smoothness condition on A can also be relaxed for k perfect, essentially since
the smooth locus of A is translation-invariant and will be open and dense under mild hypotheses.

Remark 2.2.3. Some sources define an abelian variety to be a geometrically integral projective
algebraic group, an algebraic group itself being defined as a smooth k-group scheme. Projectivity
here is a particularly nontrivial condition to verify given our definition – the verification is precisely
Theorem 4.1.2.

Example 2.2.4. Perhaps the most important example of an abelian k-variety is an elliptic curve
over k (i.e., a smooth projective genus 1 curve over k with distinguished k-rational point), which is
automatically connected (and thus geometrically connected as mentioned above) and carries a group
scheme structure.13 We see that elliptic curves are precisely the 1-dimensional abelian varieties.

Exercise 2.2.5. Given a scheme S, precisely define the notion of a “family of elliptic curves over
S.”

Example 2.2.6. Let C be a smooth, proper curve over k of genus g. Then, its Jacobian Jac(C)
is a k-scheme with the defining property that Jac(C)(k) = Pic0(C) in a functorial manner (e.g.,
Jac(C)(K) = Pic0(CK) for every finite field extension K/k). For k = C, Jac(C) may be identified
with the “analytic” Jacobian Ω1

dR(C)∗/Hsing
1 (C,Z) induced by the embedding

Hsing
1 (C,Z) ↪→ Ω1

dR(C)∗, [σ] 7→
∫
σ
•

More generally, Jac(C) is an abelian variety over k of dimension g (more on this later).14

Exercise 2.2.7. Show that the analytic Jacobian satisfies the universal property of the Jacobian in
the case k = C (note that this implicitly involves checking that Ω1

dR(C)∗/Hsing
1 (C,Z) is a complex

manifold of the appropriate dimension).15

Remark 2.2.8. It is somewhat difficult to give examples of abelian varieties that are not the “same
as” (i.e., isogenous to) a Jacobian. If you are interested in this topic then you should check out
David Masser and Umberto Zannier’s paper “Abelian varieties isogenous to no Jacobian.”

Definition 2.2.9. Let A be an abelian S-scheme, T ∈ SchS, and x ∈ A(T ). Then, the left
translation morphism tx : AT → AT is defined to be the composition

AT ∼= T ×T AT AT ×T AT AT
xT×idAT m

where xT := x × idT : T → A ×S T = AT . One can check that tx is given on the level of the
functor-of-points by y 7→ x+ y.

11This result holds in general for abelian schemes over a locally Noetherian base.
12See [aut, Tag 0361] for details.
13The group law can be specified concretely by choosing a Weierstraß model.
14Technically, the construction we have given is actually for what would be called an Albanese variety. Various

duality results show the two approaches agree in this setting.
15Technically, what we have written here is an Albanese variety.
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The remaining results in this section are stated for general abelian schemes but the arguments
given technically only work for abelian varieties. The fiberwise reduction to the abelian variety
case is left to the reader.

Theorem 2.2.10 (Rigidity). Let X,Y, Z be k-schemes with X proper, Z separated, and X,Y
geometrically integral and finite type. Let f : X ×k Y → Z be a k-morphism such that there exists
an algebraically closed extension K/k and y0 ∈ Y (K) such that the restriction fy0 : XK → ZK of
fK to XK ×K {y0} is a constant morphism to some z0 ∈ Z(K). Then, f is independent of X –
i.e., there exists a unique k-morphism g : Y → Z such that the diagram

X ×k Y

Y Z

fpr2

∃! g

commutes.

The slogan is that if one map is constant in a family of maps X → Z with X proper then every
map in the family is constant. We will most often apply the Rigidity Theorem in the case that
K = k and y0 is obtained by pulling back y′0 ∈ Y (k) such that f |X×k{y′0} is constant.

Proof. See [Con15, Thm 1.7.1].

Corollary 2.2.11. Let A,B be abelian S-schemes and f : A → B an S-morphism. Then, there
exists φ : A → B a morphism of S-group schemes such that f factors as f = tf(eA) ◦ φ. In
particular, if f(eA) = eB then f is a morphism of S-group schemes.

Proof. Post-composing f with t−1
f(eA) = t−f(eA) if necessary, we may assume that f(eA) = eB.

Consider the k-morphism h : A×k A→ B defined by

(a1, a2) 7→ f(a1a2)f(a2)−1f(a1)−1,

which is constant with value eB when restricted to A ×k {eA} and {eA} ×k A.16 By the Rigidity
Theorem, we have commutative diagrams

A×k A

A B

hpr1

∃! g1

and

A×k A

A B

hpr2

∃! g2

16Some care is necessary here since X×k Y is not in general given as a set by |X|× |Y |. A more rigorous definition
of h is

h := mB(f ◦mA, iB ◦ f ◦ pr2, iB ◦ f ◦ pr1).

What we do in this argument is work on the level of the functor-of-points.
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Given any a1, a2 ∈ A, we have g1(a1) = h(a1, a2) = g2(a2) and so

g1(a) = h(a, eA) = eB = h(eA, a) = g2(a)

for every a ∈ A. Hence, h is constant with value eB – i.e., f is a homomorphism.

One consequence of this theorem is the following.

Corollary 2.2.12. Let A ∈ SchS and e ∈ A(S). Then, there is at most one abelian S-scheme
structure on A such that e is the identity section.

Thus, the multiplication and inversion morphisms for an abelian scheme carry redundant infor-
mation already encoded by a choice of identity section. This is useful for deformation theory
arguments as it means that the we do not have to keep as careful track of group laws as would a
priori seem necessary.

Proof. Let (m1, i1) and (m2, i2) encode abelian S-scheme structures on A, each with identity section
e. By the Rigidity Theorem, idA : (A,m1, i1) → (A,m2, i2) is a homomorphism and so m1 = m2

and i1 = i2.

Corollary 2.2.13. Let A be an abelian scheme. Then, A is commutative.

Proof. Apply the Rigidity Theorem to i : A→ A.

Remark 2.2.14. An alternative proof comes from showing that the action of conjugation is in-
finitesimally trivial. See [Con15, Thm 1.5.1] for more details.

3 Line Bundles on Abelian Varieties

3.1 Rigidification and Picard Functors

Throughout this section, let X be a proper, geometrically reduced, geometrically connected k-
scheme with X(k) 6= ∅. Our goal is to understand how to classify families of line bundles on X.
We will do this by constructing the Picard functor for X/k and explaining why it is representable,
thereby obtaining the Picard scheme of X/k. In order to avoid the theory of stacks, we employ
rigidification constraints to guarantee that the Picard functor satisfies the Zariski sheaf condition.
Note that, though in general the assumption that X(k) is nonempty is too strong if we want to
construct Picard schemes, the assumption is harmless for our purposes as we will be applying the
theory to the case of abelian varieties.

Let f : X → Spec k denote the structure morphism of X. Let T ∈ Schk and e ∈ X(k). We obtain
a commutative diagram
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T Spec k

XT X

T Spec k

∃! eT

idT

e

fT f

with eT ∈ XT (T ) a section of fT induced by the universal property of XT as a pullback.

Definition 3.1.1. Let T ∈ Schk and choose e ∈ X(k). Define RT,X/k,e to be the category of
rigidified line bundles on XT consisting of pairs (L , ι) with L a line bundle on XT and

ι : e∗TL
∼−→ OT ,

called a rigidification of L along e. A morphism in RT,X/k,e is θ : (L , ι) → (L ′, ι′) such that
θ : L → L ′ is an XT -sheaf morphism and the diagram

e∗TL e∗TL ′

OT

e∗T θ

ι ι′

commutes.

The set RT,X/k,e/∼= of isomorphism classes carries a natural group structure encoded by tensor
product. This group structure is contravariantly functorial in the sense that, given T → T ′ a
k-scheme morphism, there is a group homomorphism

RT ′,X/k,e/∼=→ RT,X/k,e/∼= .

This allows us to define the Picard functor PicX/k,e : Schk → Ab by

T 7→ RT,X/k,e/∼= .

The discussion following [Con15, Def 2.2.11] shows that PicX/k,e is independent of the choice of e in
the sense that, given e′ ∈ X(k) and T ∈ Schk, there is a natural change of base point isomorphism

PicX/k,e(T )
∼−→ PicX/k,e′(T ).

As such, we may omit e from the notation PicX/k,e.
17 The following result shows that the Picard

functor admits a more concrete description that is useful for computational purposes.18

Proposition 3.1.2. The natural map RT,X/k,e/∼=→ Pic(XT )/f∗T Pic(T ) given by

[(L , ι)] 7→ L mod f∗T Pic(T )

is a group isomorphism compatible with change of base point.

Our goal is to show that the Picard functor is representable. An important step toward repre-
sentability is the following.

17Grothendieck actually gave a construction that makes no explicit mention of a k-rational point.
18See [Con15, Prop 2.2.12] for details.
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Theorem 3.1.3. PicX/k,e is a Zariski sheaf.

Proof. Given T ∈ Schk and {Ui} a Zariski open cover of T by k-schemes, we need to show that
a system of isomorphism classes [(Li, ιi)] ∈ RUi,X/k,e/

∼= agreeing on overlaps glues uniquely to
[(L , ι)] ∈ RT,X/k,e/∼= which restricts to each [(Li, ιi)]. Paraphrasing, we need to show that a
system of isomorphisms

Li|XUij

∼−→ Lj |XUij

compatible with ιi, ιj extends to a globally defined rigidified line bundle L on XT unique up to
isomorphism of rigidified line bundles on XT . This reduces to showing that (L , ι) ∈ RT,X/k,e has
no nontrivial automorphisms, as such automorphisms are precisely the obstruction to gluing. To
see this, let θ be an automorphism of (L , ι). Then, θ is a line bundle automorphism of L and
so corresponds to some element of Γ(XT ,O×XT

). By [Con15, Lemma 2.2.1], fT : XT → T induces

a natural isomorphism OT
∼−→ (fT )∗OXT

and hence a natural isomorphism O×T
∼−→ (fT )∗O×XT

.19

Passing to global sections gives Γ(T,O×T ) ∼= Γ(XT ,O×XT
) and so θ is multiplication by some u ∈

Γ(T,O×T ). It follows that e∗T θ is also multiplication by u. Since ι = ι ◦ e∗T θ by assumption and ι is
an isomorphism, e∗T θ is the identity map and so u = 1.

The full picture is provided by the following.

Theorem 3.1.4 (Grothendieck/Oort-Murre/Artin). The Picard functor PicX/k,e is represented by
a locally finite type k-scheme PicX/k,e = PicX/k.

Proof. See [Fan+05, Part 5] for a proof as well as a wealth of other information on Picard functors.

Note that, in general, if PicX/k,e is representable then it is represented by a separated k-group

scheme.20 For C a smooth proper k-curve with C(k) 6= ∅, the associated Picard scheme is none
other than the familiar Jacobian Jac(C).

3.2 The Theorems of the Cube and Square

Now that we have the notion of Picard scheme, we are well-equipped to study the behavior of
families of line bundles. Let X,Y ∈ Schk, y ∈ Y (k), and L a line bundle on X ×k Y . Define Ly

to be the restriction
Ly := L |X×k{y}.

The restriction of L to x ∈ X(k) is defined similarly. Assuming that X and Y are proper,
geometrically integral, and finite type, one might hope that if Lx and Ly are trivial for some
x ∈ X(k) and y ∈ Y (k) then L itself is trivial. Unfortunately, this is not the case in general.

Example 3.2.1. Let (E, e) be an elliptic curve over k and p any k-rational point of E. Then, it
is easy to check that O(∆ − pr∗1 e − pr∗2 e) restricts to OE(p − e) on both {p} ×k E and E ×k {p}.
Taking p = e therefore yields trivial restrictions, and taking p 6= e yields non-trivial restrictions (as
follows from Riemann-Roch).

19Here, it is essential that X is geometrically reduced since then Γ(X,OX) ∼= k. See [aut, Tag 0366] for details.
20This follows since any group scheme over a field is separated. See [aut, Tag 047G and 047J] for details.
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Fortunately, the situation can be remedied by passing from pairs of k-schemes to triples.

Theorem 3.2.2 (Theorem of the Cube). Let X,Y, Z ∈ Schk such that X,Y are proper, X,Z are
geometrically integral and finite type, and Y is geometrically reduced and geometrically connected.
Let L be a line bundle on X ×k Y ×k Z and x0 ∈ X(k), y0 ∈ Y (k), z0 ∈ Z(k). Suppose that
Lx0 ,Ly0 ,Lz0 are all trivial. Then, L is trivial.

Proof. By Theorem 3.1.4, PicY/k,y0 is represented by a separated, locally finite type k-scheme PicY/k
and so the data of a trivialization of Ly0 is equivalent to the data of a k-morphism f : X ×k Z →
PicY/k. We claim that f vanishes and so L is trivial. By assumption, Lz0 is trivial and so applying
the universal property of PicY/k once again gives that the restriction fz0 : X ×k {z0} → PicY/k
vanishes. By the Rigidity Theorem, there is a commutative diagram

X ×k Z

Z PicY/k

f
pr2

∃! g

Since Lx0 is trivial, the restriction fx0 : {x0} ×k Z → PicY/k vanishes and so g hence f vanishes
by commutativity of the diagram.

Corollary 3.2.3. Let A/k be an abelian variety, T ∈ Schk, a1, a2, a3 ∈ A(T ), and L a line bundle
on A. Then, L (a1, a2, a3) defined by

(a1 +a2 +a3)∗L ⊗(a1 +a2)∗L −1⊗(a1 +a3)∗L −1⊗(a2 +a3)∗L −1⊗a∗1L ⊗a∗2L ⊗a∗3L ⊗(e∗L )−1
T

is a canonically trivial line bundle on T .

Remark 3.2.4. Since e∗L is trivial, we may remove the term (e∗L )−1
T in the above at the cost

of making the isomorphism non-canonical.

Proof. Since A3 = A ×k A ×k A is the universal k-scheme with a triple of k-morphisms to A, it
suffices to consider the case that T = A3 and each ai is a projection morphism. More precisely,
the canonical isomorphism L (pr1, pr2, pr3)→ OA3 induces an isomorphism

L (a1, a2, a3) ∼= (a1 × a2 × a3)∗L (pr1, pr2, pr3)
∼= (a1 × a2 × a3)∗OA3

∼= OT .

Having made this reduction, the Theorem of the Cube tells us that it suffices to check triviality on
{e}×A×A, A×{e}×A, and A×A×{e}. By symmetry we need only consider {e}×A×A ∼= A2.
We obtain a series of canonical isomorphisms

(a1 + a2 + a3)∗L ⊗ (a2 + a3)∗L −1 ∼= OA2 ,

(a1 + a2)∗L −1 ⊗ a∗2L ∼= OA2 ,

(a1 + a3)∗L −1 ⊗ a∗3L ∼= OA2 ,

a∗1L ⊗ (e∗L )−1
A2
∼= OA2 ,

from which the result follows after tensoring up.
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Let L be a line bundle on an abelian scheme A/S. Then, the Mumford bundle of A is the line
bundle Λ(L ) on A×S A defined by

Λ(L ) := m∗L ⊗ pr∗1 L −1 ⊗ pr∗2 L −1.

Theorem 3.2.5 (Theorem of the Square). Let A/k be an abelian variety, L a line bundle on A,
T ∈ Schk, and x, y ∈ A(T ). Then, there is a natural isomorphism

t∗x+yLAT
⊗LAT

∼= t∗xLAT
⊗ t∗yLAT

⊗ [(x× y)∗Λ(L )⊗ e∗L ]AT

of line bundles on AT , where the subscript AT denotes pullback by the projection p : AT → A.
In particular, since (x × y)∗Λ(L ) ⊗ e∗L is a line bundle on Spec k hence trivial, there is a non-
canonical isomorphism

t∗x+yLAT
⊗LAT

∼= t∗xLAT
⊗ t∗yLAT

.

Proof. Let cx denote the constant morphism given by the composition

AT T Ax

Define cy in a similar manner. By Corollary 3.2.3, there is a natural isomorphism

(p+ cx + cy)
∗L ⊗ p∗L ∼= (p+ cx)∗L ⊗ (p+ cy)

∗L ⊗ (cx + cy)
∗L ⊗ c∗xL −1 ⊗ c∗yL −1 ⊗ (e∗L )AT

.

We have p+ cx = p ◦ tx, p+ cy = p ◦ ty, and cx + cy = cx+y. Hence,

(p+ cx)∗L = (p ◦ tx)∗L = t∗xLAT
,

with similar results for y and x+y. Unpacking the definition of Λ(L ) yields a natural isomorphism

c∗x+yL ⊗ c∗xL −1 ⊗ c∗yL −1 ∼= ((x× y)∗Λ(L ))AT
.

The result follows.

Corollary 3.2.6. Let A/k be an abelian variety and L a line bundle on A. Then, the k-morphism
φL : A→ PicA/k defined by

x 7→ t∗xL ⊗L −1

is a morphism of group schemes.21

Morphisms of the type φL are massively important for their relationship to dual abelian varieties.

Proof. The definition of φL given above is somewhat imprecise. A more precise definition is as
follows. Let T ∈ Schk and x ∈ A(T ). Then,

φL (T )(x) = φL (x) := t∗xLAT
⊗L −1

AT
.

21Technically, φL sends x to the isomorphism class of t∗xL ⊗L−1. We will often ignore this technicality and freely
interchange between isomorphism classes of line bundles and their representatives.
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Given x, y ∈ A(T ), applying the Theorem of the Square yields

φL (x+ y) = t∗x+yLAT
⊗L −1

AT

∼= (t∗xLAT
⊗ t∗yLAT

⊗L −1
AT

)⊗L −1
AT

∼= (t∗xLAT
⊗L −1

AT
)⊗ (t∗yLAT

⊗L −1
AT

)

= φL (x)⊗ φL (y).

The result follows.

Exercise 3.2.7. Use the Theorem of the Square to deduce other properties of φL . For example,
what can be said about φt∗xL for x ∈ A(k)?

4 Dual Abelian Varieties

Now that we understand some of the behavior of families of line bundles on an abelian variety, let’s
put that understanding to use.

4.1 Line Bundles and Duals

The subscheme Pic0
X/k has many nice properties by Lemma 2.1.3. In the case of an abelian variety

A,
A∨ := Pic0

A/k

is called the dual of A. Some justification for the superscript notation comes from the case of
curves.

Exercise 4.1.1. Let X be a proper, geometrically reduced, geometrically connected k-scheme of
dimension 1 with X(k) 6= ∅ and genus g. Then, Pic0

X/k is smooth of dimension g and satisfies

PicX/k(K) ∼= {[L ] ∈ Pic(XK) : deg L = 0}

for every field extension K/k.22

Letting Y := PicX/k, we have PicX/k,e(Y ) = [(UX , ιX)]. The pair (UX , ιX) is called the universal
rigidified line bundle of X (relative to e) and is unique up to isomorphism of rigidified line
bundles. By definition, UX is a line bundle on X ×k Y = XY and ιX : e∗Y UX

∼−→ OY . Given any
T ∈ Schk and (L , ι) a rigidified bundle on XT , there exists a unique k-morphism ϕ : T → Y such
that

(L , ι) = (idX ×ϕ)∗(UX , ιX).

Restricting now to the case of abelian varieties, let (UA, ιA) be the universal rigidified line bundle
of A associated to e, so that UA is a line bundle on A×kPicA/k and ιA : UA|{e}×kPicA/k

∼−→ OPicA/k
.

Define the Poincaré bundle PA to be the line bundle on A×kA∨ obtained by restricting (UA, ιA)
to A×kA∨. We have a rigidification PA|A×k{0}

∼−→ OA, which can be made canonical by fixing the

22This exercise is [Con15, Exercise 2.4.3]. See the reference for hints.
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image of (e, 0). Every k-morphism Y → PicA/k corresponds uniquely to the data of a rigidified line

bundle (L , ι) with L a line bundle on A×kY and ι : Le
∼−→ OY , obtained via (idA×ϕ)∗(UA, ιA) for

a unique k-morphism ϕ : Y → PicA/k. By the universal property of PA, the morphism Y → PicA/k
factors through A∨ precisely when L is pr2-trivialized in the sense that pulling back (PA, ιA) and
restricting induces a compatible family of trivializations Ly

∼−→ OA for y ∈ Y (k).

Let’s apply all of the above to φL : A→ PicA/k for L a line bundle on A. We deduce immediately
that ϕ as above is exactly φL in this context. We claim that φL factors through A∨ – i.e.,
(idA×φL )∗(PA) is pr2-trivialized. [Con15, Prop 3.3.1] shows that there is a natural identification
(idA×φL )∗(PA) ∼= Λ(L ) compatible with the rigidifications on each. But, Λ(L ) is pr2-trivialized
since, given x ∈ A(k),

Λ(L )|A×k{x} = (m∗L ⊗ pr∗1 L −1 ⊗ pr∗2 L −1)|A×k{x}
∼= L ⊗L −1 ⊗OA ∼= OA.

Theorem 4.1.2. Let A/k be an abelian variety. Then, A is projective.

Proof. The goal is to produce an ample line bundle on A. Our argument is a sketch of the one
given in the proof of [Con15, Thm 3.4.1]. Here are the steps.

(1) Using Galois descent, reduce to the case k = k.

(2) Let U be an open affine neighborhood of e in A. Show that D := (A − U)red is an effective
Weil divisor.23

(3) Show that {x ∈ A(k) : t∗xD = D} is finite.

(4) Letting L := OA(D), deduce that L ⊗2 is globally generated with iL : A → PΓ(A,L ⊗2)
finite (note that iL need not a priori be an embedding).

Since iL is finite, L ⊗2 ∼= i∗LO(1) is ample by [aut, Tag 0B5V] and so we deduce that L is
ample.

4.2 Duals as Abelian Varieties

Our goal in this section is to show that the dual of an abelian variety is itself an abelian variety
and explore some of its geometry useful for proving the Mordell-Weil Theorem.

Theorem 4.2.1. Let A/k be an abelian variety. Then, the dual A∨ is an abelian variety.

Remark 4.2.2. Note that, for X ∈ Schk and x ∈ X(k), there is a natural identification of k-vector
spaces

TX/k,x = TxX = {y ∈ X(k[ε]) : C(y) commutes},

where k[ε] is the k-algebra defined by ε2 = 0 and C(y) is the diagram

Spec k Spec k[ε]

X

x y

23See [Bha17, Lemma 10.10] for details.
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with horizontal arrow induced by the map k[ε]→ k given by ε 7→ 0.

Proof. This boils down to showing that A∨/k is

(i) a geometrically connected group scheme;

(ii) proper;

(iii) smooth.24

We check each of these conditions separately.

(i) By construction, A∨ = Pic0
A/k is a geometrically irreducible closed k-group subscheme of

PicA/k and so is a fortiori geometrically connected.

(ii) It suffices to show that PicA/k is proper. The idea is to use the valuative criterion of proper-
ness. Since the structure morphism PicA/k → Spec k is finite type, we need only consider
DVRs (discrete valuation rings) instead of valuation rings more generally. Let R be a DVR
which is a k-algebra and K its fraction field. We claim any commutative diagram

SpecK PicA/k

SpecR Spec k

f

can be filled in uniquely to get a commutative diagram

SpecK PicA/k

SpecR Spec k

f
∃!

The k-morphism SpecK → PicA/k is equivalent to the data of a line bundle on AK with a

rigidification ι : LeK
∼−→ OSpecK , where eK ∈ AK(K) is induced by e ∈ A(k). A similar

statement applies to SpecR and so our goal is to construct a line bundle M on AR with
rigidification ι′ : MeR

∼−→ OSpecR compatible with (L , ι) under pullback. Identifying X with
AR, this boils down to the following statement. Let η by the generic point of R and L a
line bundle on the generic fiber Xη. Then, L extends to a line bundle defined on all of X.
The idea is to use that Xη is an integral K-scheme to think of L as a Cartier divisor on Xη

and then use the projectivity of X to extend this to a Cartier divisor on X. See [Alt14] for
details.

(iii) Let g := dimA. By translation, smoothness reduces to showing that dimA∨ = dimk T0A
∨.

We will show that both of these numbers are g. Here are the steps.

(1) dimk T0A
∨ = dimkH

1(A,OA).

(2) g ≤ dimA∨ ≤ dimk T0A
∨.

(3) dimkH
1(A,OA) ≤ g.

24If char k = 0 then A∨ is automatically smooth since a celebrated theorem of Cartier gives that every finite type
k-group scheme is smooth. The argument we give shows that PicA/k is smooth. This is perhaps somewhat surprising
since Picard schemes, even if they exist, need not in general be smooth in positive characteristic.
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By the remark, there is an isomorphism of k-vector spaces given by

T0A
∨ ∼= T0 PicA/k ∼= ker(PicA/k(k[ε])→ PicA/k(k)).

The inclusion k ↪→ k[ε] makes Spec k[ε] into a k-scheme. Let A[ε] := Ak ×k [ε] and denote
by f [ε] : A[ε]→ Spec k[ε] the corresponding base change of the structure morphism f : A→
Spec k. By Proposition 3.1.2, there are isomorphisms PicA/k(k) ∼= Pic(A) and

PicA/k(k[ε]) ∼= Pic(A[ε])/f [ε]∗ Pic(k[ε]) ∼= Pic(A[ε])

that fit into a commutative diagram

PicA/k(k[ε]) PicA/k(k)

Pic(A[ε]) Pic(A)

∼= ∼=

with horizontal arrows given by pullback. We have a sort of exponential short exact sequence

1 1 + εOA[ε] O×A[ε] O×A 1

Under the identification 1 + εOA[ε]
∼−→ OA given by 1 + εσ 7→ σ, we get a short exact sequence

1 OA O×A[ε] O×A 1
exp

and hence a commutative diagram

H0(A,O×A[ε]) H0(A,O×A) H1(A,OA) H1(A,O×A[ε]) H1(A,O×A)

Pic(A[ε]) Pic(A)

ψ exp

∼= ∼=

We have H1(A,O×A) ∼= k× and so dimensional considerations give that ψ is surjective. Hence,
ker exp ∼= cokerψ = 0 and so

T0A
∨ ∼= H1(A,OA) =⇒ dimk T0A

∨ = dimkH
1(A,OA).

This shows (1). By Theorem 4.1.2, A is projective and so it has an ample line bundle L .
By Lemma 5.1.12, φL : A → A∨ is finite and so is a fortiori quasi-finite. It follows that
g ≤ dimA∨. This shows (2) since dimA∨ ≤ dimk T0A

∨ is automatic. (3) is precisely [Con15,
Prop 5.1.1], which uses Serre duality, the Künneth formula, and a theorem of Borel on the
structure of Hopf algebras to deduce that the map ∧iH1(A,OA) → H i(A,OA) induced by
cup product is an isomorphism for every i ≥ 0.25

5 The Weak Mordell-Weil Theorem

We now embark on our first of two major tasks involved in proving the Mordell-Weil Theorem,
starting with a discussion of isogeny and torsion.

25[Bha17, Cor 15.4] gives a different proof using Koszul complexes which, with some extra work, shows that the
cohomology algebra of A is isomorphic to the exterior k-algebra of H1(A,OA). This is an important starting point
for the theory of the Fourier-Mukai transform.
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5.1 Isogeny and Torsion

In every field of mathematics, it is important to know in what sense the objects of interest are the
“same.” In the context of abelian varieties, that notion of equivalence is isogeny.

Definition 5.1.1. An isogeny is a finite flat surjective morphism of abelian varieties. An abelian
variety A is said to be isogenous to another abelian variety B if there exists an isogeny f : A→ B.
For such f , the degree is defined to be deg(f) := [k(A) : k(B)].

Remark 5.1.2. It is clear that isogeny is a reflexive and transitive relation. We will see later that
it is also symmetric and so defines an equivalence relation.

Given f : A→ B a morphism of abelian varieties, it is natural to ask when f is an isogeny.

Example 5.1.3. If A,B are elliptic curves and f is nonzero then it is a classical fact that f is an
isogeny (and is an isomorphism if and only if deg(f) = 1).26 This need not be the case for A,B
general abelian varieties of the same dimension.

Exercise 5.1.4. Construct such a counterexample.

Lemma 5.1.5. Let f : A→ B be a morphism of abelian k-varieties.

(a) Suppose f is flat. Then, f is surjective.

(b) Suppose f is surjective. Then, f is flat.

(c) Suppose f is finite and surjective. Then, dimA = dimB.

(d) Suppose dimA = dimB. Then, f is flat if and only if it is finite.

Proof. We begin by noting some facts about dimension. Let e denote the identity of A. Given
x ∈ A, tx : A → A is an isomorphism and so induces a k-linear isomorphism dtx : TeA → TxA.
Hence,

dimOA,x = dimk TxA = dimk TeA = dimOA,e
by smoothness and so dimA = dimOA,x. At the same time, f is flat if and only if

dimOA,x = dimOB,y + dimOf−1(y),x (1)

for every x ∈ A with y = f(x) ∈ B.27

(a) Since f is a flat morphism between irreducible schemes, f is dominant.28 Since f is proper,
f has closed image and so is surjective.

(b) By Grothendieck’s Generic Flatness, there is a nonempty open U ⊆ B such that the restriction
f−1(U)→ U is flat.29 Equation (1) therefore holds on f−1(U) 6= ∅ and so holds everywhere
by translation.

26More generally, morphisms between projective curves are either constant or surjective.
27See [aut, Tag 00R4] for details. This result often goes by the name of Miracle Flatness.
28The point is that f lifts generalizations. See [edg18] for details.
29See [aut, Tag 0529] for details.
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(c) The key is that a scheme has dimension n if and only if it has a cover by affine opens each
of dimension ≤ n with at least one open having dimension exactly n. With that said, choose
such a cover C realizing the dimension of B. Since f is finite hence affine, f pulls back C
to a cover of A by open affines. For each U ∈ C, f−1(U) is nonempty and so has the same
dimension as U (recall that f is proper and so is integral in this setting). It follows that
dimA = dimB.

(d) The empty fibers of f are obviously well-behaved, so we will handle the nonempty fibers. Let
x ∈ A with y = f(x) ∈ B. Since dimA = dimB, Equation (1) gives that f is flat at x if
and only if dimOf−1(y),x = 0. Since f−1(y) is quasi-compact, it is finite if and only if it has
dimension 0 and so f is flat if and only if it is finite.

An important notion in our discussion of isogeny is that of torsion. Given m ∈ Z and A an abelian
group, let A[m] denote the m-torsion subgroup of A (i.e., the kernel of the multiplication map
[m] : A → A). If A/S is an abelian scheme then we let A[m] denote the m-torsion subscheme of
A, which naturally fits into a Cartesian diagram

A[m] S

A A

e

[m]

Theorem 5.1.6. Let A/S be an abelian scheme and m ∈ Z6=0. Then, [m] : A→ A is an isogeny.30

If in addition m is invertible in S (i.e., m ∈ OS(S)×) then [m] is étale.

Proof. Suppose first that m is invertible in S. We claim it suffices to show that [m] is étale. To
see this, suppose that [m] is étale. Then, [m] is flat and locally quasi-finite with open image. Since
[m] is also proper, [m] is finite by [aut, Tag 02LS] and surjective since it has closed image. Hence,
we are reduced to showing that [m] is étale. Since flatness may be checked fiber-wise, we may
assume without loss of generality that S = Spec k.31 Since the structure morphism A → Spec k
is smooth by assumption, [BLR90, Cor 2.2/10] gives that [m] is étale at x ∈ A if and only if the
canonical homomorphism [m]∗ΩA/k → ΩA/k induces an isomorphism on stalks at x. Dualizing,
this is equivalent to the natural homomorphism d[m] : TA/k,x → TA/k,[m]x being an isomorphism of
k-vector spaces. A small inductive argument gives that d[m] is simply multiplication by m.32 It
follows that d[m] : TA/k,e → TA/k,e is an isomorphism (since m is invertible in k) and the diagram

TA/k,e TA/k,e

TA/k,x TA/k,[m]x

d[m]

dtx dt[m]x

d[m]

commutes. Since tx and t[m]x are both isomorphisms, dtx and dt[m]x are isomorphisms and so
d[m] : TA/k,x → TA/k,[m]x is an isomorphism.

30Note that the notion of isogeny generalizes easily from abelian varieties to all abelian schemes.
31See [BLR90, Section 2.2 and 2.4] for details.
32We see immediately that [m] is not étale if m is not invertible in k since then d[m] is not an automorphism of

TeA.
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Now, consider the more general case where [m] is not assumed to be invertible in S. As mentioned
earlier, flatness may be checked fiber-wise. Since surjectivity and finiteness may also be checked
fiber-wise, we may assume without loss of generality that S = Spec k. By Lemma 5.1.5, it suffices
to show that [m] is finite, which is the same as showing that A[m] has dimension 0. By Theorem
4.1.2, A is projective and so we may choose L an ample line bundle on A. Consider the symmetric
line bundle M := L ⊗ [−1]∗L , which is ample since L is ample and [−1] is an automorphism.33

By Lemma 5.1.7 (statement and proof below), we have

[m]∗M ∼= M⊗(m2+m)/2 ⊗ [−1]∗M⊗(m2−m)/2 ∼= M⊗m2
,

which is ample since M is ample and m2 > 0. At the same time,

([m]∗M )|A[m]
∼= [m]∗(M |A[m]) ∼= OA[m].

Hence, A[m] is affine along with all of its (nonempty) closed subschemes.34 It follows thatA[m] must
have dimension 0 since otherwise it would contain a proper closed k-curve which must necessarily
be non-affine.

Lemma 5.1.7. Let A/k be an abelian variety, m ∈ Z, and L a line bundle on A. Then,

[m]∗L ∼= L ⊗(m2+m)/2 ⊗ [−1]∗L ⊗(m2−m)/2.

Proof. The claim clearly holds for m = 0, 1. The idea of the proof is to use Corollary 3.2.3 to
induct up and down. The argument for inducting down is very similar to the one for inducting up
and so we omit it. Let m ∈ Z and assume the result holds for m and m + 1. Consider the maps
[m+ 1], [1] = idA, [−1] = − idA : A→ A. By Corollary 3.2.3,

OA ∼= [m+ 1]∗L ⊗ [m+ 2]∗L −1 ⊗ [m]∗L −1 ⊗ [m+ 1]∗L ⊗L ⊗ [−1]∗L ,

where we have used that pulling back by [0] gives a trivial bundle. Rearranging and applying the
inductive hypothesis gives

[m+ 2]∗L ∼= ([m+ 1]∗L )⊗2 ⊗ ([m]∗L )−1 ⊗L ⊗ [−1]∗L

∼= L ⊗(m2+3m+2) ⊗ [−1]∗L ⊗(m2+m) ⊗L ⊗−(m2+m)/2 ⊗ [−1]∗L ⊗−(m2−m)/2L ⊗ [−1]∗L

= L ⊗(m2+5m+6)/2 ⊗ [−1]∗L ⊗(m2+3m+2)/2,

which is of the desired form.

Moreover, the following result shows that [m] is in some sense the prototypical example of an
isogeny between abelian varieties.

Theorem 5.1.8. Let f : A → B be a morphism of abelian k-varieties. Then, f is an isogeny if
and only if there exists d ∈ Z6=0 and g : B → A an isogeny such that g ◦ f = [d]A. In either case,
f ◦ g = [d]B.

33A line bundle L on A is symmetric if L ∼= [−1]∗L and anti-symmetric if L−1 ∼= [−1]∗L .
34Here, we have made use of a combination of Serre’s criteria for ampleness and affineness, which together say that

a proper R-scheme X for R a Noetherian ring is affine if and only if OX is ample.
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Proof. Suppose first that f is an isogeny and let d := deg(f) ∈ Z6=0. Then, ker f is a finite group
scheme of rank d and so is annihilated by multiplication by d. It follows that [d]A factors as

A B A
f g

for g : B → A some morphism of abelian varieties. Since [d]A is surjective, g is also surjective.
Since f is an isogeny, dimA = dimB and so g is finite flat hence an isogeny. Since g is a morphism
of abelian varieties,

g ◦ [d]B = [d]A ◦ g = (g ◦ f) ◦ g = g ◦ (f ◦ g) (2)

and so [d]B = f ◦ g. For the converse, suppose that there exists d ∈ Z6=0 and g : B → A an isogeny
such that g ◦ f = [d]A. The computation in Equation (2) shows that [d]B = f ◦ g and so f is
surjective since [d]B is surjective. Since g is an isogeny, dimA = dimB and so f is finite flat hence
an isogeny.

Exercise 5.1.9. Fill in the following details to complete the proof of the previous theorem.

(1) Let π : G → S be locally free group scheme of rank r with S a reduced irreducible scheme.35

Show that G is annihilated by multiplication by r – i.e., [r]G given on points by g 7→ gr is the
0-morphism [0]G = e ◦ π : G→ S → G.36

(2) Let f : A→ B be a morphism of abelian k-varieties and d ∈ Z such that multiplication by d
annihilates ker f . Show that [d]A factors

A B A
f g

for g : B → A a morphism of abelian varieties.

(3) Let W,X, Y, Z be abelian k-varieties. Let f : W → X and h : Y → Z be isogenies and
g1, g2 : X → Y homomorphisms such that h ◦ g1 ◦ f = h ◦ g2 ◦ f . By working with k-points,
show that f, h can be canceled to get g1 = g2.

Given a group scheme G/S, G determines a sheaf of groups on the small étale site Sét via its
functor-of-points hG. For commutative group schemes, we similarly get étale sheaves of abelian
groups. Group subschemes give rise to injections on the level of étale sheaves. One reason this
matters is the following result.

Corollary 5.1.10. Let A/S be an abelian scheme and m ∈ Z invertible in S. Then, the sequence

0 A[m] A A 0
[m]

of commutative S-group schemes is short exact

Proof. The only nontrivial part is checking exactness at the right term (exactness elsewhere can
be verified directly or by looking at geometric stalks). Let U be an étale S-scheme and α ∈ hA(U).
The morphism [m] : A→ A induces a corresponding natural transformation [m] : hA → hA. Define
U ′ so that it sits in a Cartesian diagram

35Recall that this means that π is affine and π∗OG is a rank r locally free OS-module.
36This is [MGE14, Exercise (4.4)].
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U ′ A

U A

β

φ [m]

α

Then, φ is an étale surjection since [m] is an étale surjection by Theorem 5.1.6 and so {φ : U ′ → U}
is an étale covering of U . By construction, [m]β = α and we have our result.

Exercise 5.1.11. Given A an abelian k-variety and m ∈ Z6=0, Theorem 5.1.6 shows that [m] :
A→ A is an isogeny. It is then natural to ask for the degree. There are several ways of going about
this (such as using intersection theory) but we will take the approach of using Euler characteristic.
Namely, let X be a proper k-scheme, L a line bundle on X, and F ∈ Coh(X). Then, χ(F⊗L ⊗r)
is a numeric polynomial in r of degree ≤ g = dimX – i.e., it assumes integral values at integers
and so is a Z-linear combination of binomial coefficients. Hence, there is some dL (F ) ∈ Z such
that

χ(F ⊗L ⊗r) =
dL (F )

g!
rg + (lower order terms).

We let deg(L ) := dL (OX).

(1) Given n ∈ Z, show that deg(L ⊗n) = ng deg(L ).

(2) Let f : X ′ → X be a finite morphism of schemes with X proper integral and d the degree of
the generic fiber. Given L a line bundle on X, show that deg(f∗L ) = d · deg(L ).

(3) Show that deg([m]) = m2g, where g = dimA.

(Bonus!) Let X be a smooth proper k-curve. Show that our notion of degree agrees with the one for
line bundles on X defined in terms of divisors.

(Bonus!) Let X be a proper integral k-scheme and L a very ample line bundle over X. Show that our
notion of degree agrees with the one obtained by taking the k-rank of the finite intersection
with a generic codimension-g linear subspace.

Though not directly relevant to the remainder of these notes, the last two results in this section
help tie the notion of isogeny to the structure of abelian varieties and their duals.

Proposition 5.1.12. Let A/k be an abelian variety and L an ample line bundle on A. Then,
φL : A→ A∨ is an isogeny.

Proof. Since dimA = dimA∨, Lemma 5.1.5 tells us that φL is an isogeny if it is finite.37 By
previous work, we know that φL is proper and φL is finite if and only if kerφL is finite. Since
kerφL is quasi-compact, the latter holds if and only if the abelian subvariety B := (kerφL )0

red

has dimension 0.38 Since L is ample, M := L |B is also ample. At the same time, φM = 0 by
assumption. Hence,

OB×kB
∼= (idB ×φM )∗PB

∼= Λ(M ).

Restricting to the anti-diagonal in B ×k B, we have

OB ∼= (e∗M )B ⊗M−1 ⊗ [−1]∗M−1 ∼= M−1 ⊗ [−1]∗M−1.

37Such isogenies (i.e., those that map an abelian variety to its dual) are called polarizations.
38We take the reduction so that B has nonzero smooth locus, which we then translate to show B is smooth.
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Inverting this gives OB ∼= M ⊗ [−1]∗M , which is ample since M is ample and [−1] is an iso-
morphism. Hence, B is affine. It follows that B must have dimension 0 since otherwise it would
contain a proper closed k-curve which necessarily must be non-affine.

Corollary 5.1.13. Let A/k be an abelian variety. Under the identification Pic∨A/k(k) = Pic(Ak),

A∨(k) = {[L ] ∈ Pic(Ak) : φL = 0}.

Proof. Assume without loss of generality that k = k. Given L a line bundle on A with φL = 0,
Λ(L ) is trivial and so [L ] ∈ A∨(k) by earlier discussion. For the converse, let [L ] ∈ A∨(k). Using
that A is projective, choose M an ample line bundle on A. Then, φM : A→ A∨ is an isogeny and
so is surjective on k-points since k = k. Hence, there is x ∈ A(k) such that L ∼= φM (x). Given
y ∈ A(k),

φL (y) = t∗yL ⊗L −1 ∼= t∗x+yM ⊗ t∗yM−1 ⊗ t∗xM−1 ⊗M ∼= OA
by the Theorem of the Square and so φL = 0.

5.2 Proof of the Weak Mordell-Weil Theorem

Now we get to the heart of the matter.

Theorem 5.2.1 (Weak Mordell-Weil). Let k be a global field, A an abelian variety over k, and
m ∈ Z≥2 such that m - char k. Then, the quotient A(k)/m is finite.

Proof. The main idea of the proof is to realize A(k)/m as a subgroup of an appropriate cohomology
group which is finite. Where does cohomology enter the picture? By Corollary 5.1.10, the sequence

0 A[m] A A 0
[m]

of commutative k-group schemes is short exact over the étale site of Spec k. Hence, passing to
group/étale cohomology yields an exact sequence

A(k) A(k) H1(k,A[m])
[m] δ

and hence an embedding A(k)/m ↪→ H1(k,A[m]) with image δ(A(k)). We need to carefully analyze
this image since H1(k,A[m]) is not in general finite.39 As explained in the proof of [Con15, Thm
9.3.11], we can “spread out” the abelian variety A→ Spec k to get an abelian scheme A → U whose
generic fiber is A, where U := SpecOk,S for some S ⊆ Σk finite containing the archimedean places
such that m and #|A[m]| = #A[m](ks) are S-units.40 It then follows that we may identify A(k)
and A(U) as well as their quotients A(k)/m and A(U)/m.41 By Corollary 5.1.10, the sequence

39Even in the nice case that µm ⊆ k, Kummer theory tells us that H1(k, µm) ∼= k×/(k×)m and so H1(k,A[m]) is
a product of infinite groups since A[m](ks) ∼= µ2g

m for g := dimA.
40Classically, one takes S to include the places of bad reduction for A and uses Néron models to construct A. See

[Poo17, Section 3.2] for more on spreading out.
41This boils down to denominator chasing at the places away from S and the valuative criterion for properness

over a Dedekind base at the places in S.
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0 A[m] A A 0
[m]

is exact on Uét and so passing to étale cohomology yields an embedding A(U)/m ↪→ H1
ét(U,A[m])

fitting into a commutative diagram

A(U)/m H1
ét(U,A[m])

A(k)/m H1(k,A[m])

with unmarked vertical arrow induced by U → Spec k. Thus, instead of studying the image δ(A(k))
we may study the image of A(U)/m ↪→ H1

ét(U,A[m]). We accomplish this by imposing certain
ramification conditions.

Given u ∈ U a closed point (equivalently, a nonzero prime ideal of Ok,S), the inertia group Iu
of u is a subgroup of Γ obtained in one of two equivalent ways.42 The first approach is to view it
as the Galois group Gal((ku)s/k

unr
u ) for (ku)s and kunr

u compatible separable closure and maximal
unramified extension of the completion ku, respectively. This embeds into the absolute Galois
group Γku and hence Γ by restriction (i.e., by sending σ to σ|ks , thinking of ks as embedded nicely
in (ku)s). The second approach is to view Iu as the Galois group of the fraction field of the strict
henselization Osh

U,u of the local ring OU,u, which has the important property that every finite étale

cover of SpecOsh
U,u is split and so it is cohomologically trivial for the étale topology (we think of

SpecOsh
U,u as the étale local neighborhood of U at u). This again embeds into Γ via an appropriate

restriction procedure.

No matter the approach taken, we obtain Iu as a subgroup of Γ well-defined up to conjugation
(i.e., different choices of embedding yield conjugate subgroups). The equivalence between these
two approaches comes from unpacking the construction of kunr

u and Osh
U,u. Osh

U,u is characterized
by being universally strictly henselian with respect to OU,u and so is a henselian local ring (i.e., it
satisfies the conclusion of Hensel’s Lemma) with maximal ideal mOsh

U,u (for m the maximal ideal

of OU,u) such that Osh
U,u/mOsh

U,u
∼= κsep (for κ the residue field of U at u). We construct Osh

U,u

as a filtered colimit of finite étale OU,u-algebras. It follows that FracOsh
U,u is a filtered colimit of

finite étale ku-algebras, which we can then replace with a filtered colimit of finite unramified (field)
extensions of ku.

With this information in hand, we claim that δ(A(k)) lands in the subgroup of ξ ∈ H1(k,A[m])
unramified outside S in the sense that ξ|Iu = 0 in H1(Iu, A[m]) for every closed point u ∈ U . This
follows since, given u ∈ U a closed point, the composition

A(U)/m H1
ét(U,A[m]) H1(k,A[m]) H1(Iu, A[m])

factors through H1
ét(SpecOsh

U,u,A[m]) = 0 since Iu is the Galois group of FracOsh
U,u. Phrased in

more concrete terms, given u a closed point of U , we want to know if the restriction to Iu of
ξa ∈ H1(k,A[m]) vanishes, where ξa is the image of [a] ∈ A(k)/m. If we view ξa as an obstruction
to m-divisibility then this is the same as viewing [a] as an obstruction to m-divisibility as an
element of A(FracOsh

U,u)/m. That is, we want to know if [m] : A(FracOsh
U,u) → A(FracOsh

U,u) is

42Recall that Γ denotes the absolute Galois group of k.
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surjective. We get an affirmative answer after identifying A(FracOsh
U,u) with A(Osh

U,u) and noting

that every finite étale cover of Osh
U,u is split. By [Con15, Cor 9.3.4], we also have that A[m](ks) is

unramified outside S in the sense that Iu acts trivially on A[m](ks) for every closed point u ∈ U .
Thus, we are done by the following theorem.

Theorem 5.2.2. Let k be a global field with absolute Galois group Γ := Gal(ks/k), S ⊆ Σk finite
containing the archimedean places, and M a finite discrete Γ-module such that m := #M is an
S-unit and M is unramified outside S. Then,

H1
S(k,M) := {ξ ∈ H1(k,M) : ξ is unramified outside S}

is finite.

Proof. We claim it suffices to show the result assuming µm ⊆ k, M = µm, and the places of k
associated to m are contained in S. To see this, let K/k be a finite Galois extension splitting M
in the sense that ΓK := Gal(ks/K) acts trivially on M .43 If K ′ is any finite Galois extension of
K then K ′ also splits M and so we may assume µm ⊆ K. Note that, since m is an S-integer,
char k - m and so µd is cyclic of order d for every d | m. The elements of µm are ramified only at
the places of k associated to m. Enlarging S by these places increases the size of H1

S(k,M), so if
we prove finiteness for the larger group then we have finiteness for the smaller one. Hence, we may
assume the places of k associated to m are contained in S. Now, let SK ⊆ ΣK denote the set of
places extending the places in S. We have an inflation-restriction exact sequence

0 H1(Gal(K/k),M) H1(k,M) H1(K,M)Inf Res

satisfying Res(H1
S(k,M)) ⊆ H1

SK
(K,M).44 SinceH1(Gal(K/k),M) is finite, it follows thatH1

S(k,M)

is finite if H1
SK

(K,M) is finite. The isomorphism of abelian groups

M ∼=
∏
i

µdi

for some finite collection of integers di | m is an isomorphism of ΓK-modules since all of the ΓK-
modules involved are split. By assumption, each term in the product is finite and so H1

SK
(K,M) is

finite. Hence, we may assume µm ⊆ k, M = µm, and the places of k associated to m are contained
in S.

With the simplifying assumptions established, our goal now is to construct an exact sequence

1 O×k,S/(O
×
k,S)m H1

S(k, µm) Pic(Ok,S)[m]

The left-hand and right-hand terms are finite by the S-unit and S-class number theorems, respec-
tively, from which we get the finiteness of H1

S(k, µm).45 Let L be the extension of k maximal with
respect to being unramified outside S, obtained as the compositum of all finite extensions of k

43Since M is a finite discrete Γ-module, the corresponding homomorphism ϕ : Γ → AutSet(M) is continuous and
has kernel a finite index closed normal subgroup of Γ. The Fundamental Theorem of Galois Theory then guarantees
that kerϕ = ΓK for K/k a finite Galois extension.

44This uses the assumption that M is unramified outside S.
45One could forego the S-class number theorem by noting that suitably enlarging S kills Pic(Ok,S)[m].
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unramified outside S.46 Let OL be the compositum of OE for E ranging over the finite extensions
of k unramified outside S.47 The extension L/k is Galois since roots of the same irreducible poly-
nomial in k[t] give rise to extensions with the same discriminant, with Galois group G := Gal(L/k)
satisfying (OL)G = Ok,S . Why should we consider L? Since Γ acts trivially on µm, we have

H1
S(k, µm) = {ξ ∈ Homcont(Γ, µm) : ξ|Iu = 1 for every closed point u ∈ U}.

This says that elements of H1
S(k, µm) are entirely determined by their action on the complement

in Γ of the union of the inertia groups Iu ranging over the closed points u ∈ U (what a mouthful!).
In other words, they are determined by their action on G!48 Hence, there is a natural isomorphism

H1
S(k, µm) ∼= Homcont(G,µm) = H1(G,µm).

Consider now the sequence

1 µm O×L O×L 1
(·)m

We claim that this is an exact sequence of abelian groups. Exactness at the left term is just the
fact that µm ⊆ O×k,S ⊆ O

×
L . Exactness at the middle term is clear. To check exactness at the right

term, let a ∈ O×L . Let α ∈ ks be an mth root of a. Let E be any subfield of L(α) such that E/k
is finite. Then, E is either a subfield of L or of the form F (α) for F a subfield of L. The first
case leaves nothing to check so we address the second case, in which F is necessarily unramified
outside S. The minimal polynomial pα(t) ∈ OF [t] of α over OF divides tm − a. Let p ∈ SpecOF
representing the extension to ΣF of a place of Σk \ S. Then, the image of tm − a in (OF /p)[t] has
formal derivative mtm−1 and so is separable since m is nonzero in OF /p. It follows that pα(t) has
separable image in (OF /p)[t] and so F (α)/k is unramified outside S. Hence, E is a subfield of L
and so α ∈ O×L , giving exactness at the right term of the sequence. Passing to group cohomology
relative to G, we obtain a commutative diagram

H0(G,O×L ) H0(G,O×L ) H1(G,µm) H1(G,O×L ) H1(G,O×L )

O×k,S O×k,S H1
S(k, µm) Pic(Ok,S) Pic(Ok,S)

(·)m

∼= ∼= ∼=

(·)m

(·)m (·)⊗m

with exact rows. Where do the embeddings come from? Letting V := SpecOL, the embedding
H1(G,O×L ) ↪→ Pic(Ok,S) is obtained by noting that

Pic(Ok,S) ∼= Pic(U) ∼= H1
ét(U,Gm) and H1(G,O×L ) ∼= H1

ét(V,Gm)

and then applying the map induced by V → U . Hence, we obtain the desired exact sequence

46Recall that a general extension E/k is unramified outside S if it is the compositum of finite subextensions
unramified outside S. In the case k = Q, the theory of discriminants and the Minkowski discriminant bound show
that L = Q if S = ∅ and L is an infinite degree extension of Q if S 6= ∅. In general, L is almost certainly an infinite
degree extension of k.

47This construction technically only makes sense for number fields since the ring of integers has no analogue for
global function fields. We leave the modification of this construction to that approach to the reader.

48The following should help if this seems perplexing. Kummer theory gives us an isomorphism k×/(k×)m
∼−→

Homcont(Γ, µm) via [a] 7→ ξa sending σ ∈ Γ to σ(α)/α for α ∈ ks an mth root of a. Then, ξa is unramified at a closed
point u ∈ U if and only if any extension of k obtained by adjoining an mth root of a is unramified at u.
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1 O×k,S/(O
×
k,S)m H1

S(k, µm) Pic(Ok,S)[m]

from the bottom row of the above two-row diagram.

Remark 5.2.3. A useful way of conceptualizing the above proof of the Weak Mordell-Weil Theorem
is to appeal to Selmer and Shafarevich-Tate groups.49 Given v ∈ Σk, we obtain a map Resv as the
composition

H1(k,A) = H1(Γ, A(ks)) H1(Γkv , A(ks)) H1(Γkv , A((kv)s)) = H1(kv, A)Res

From Corollary 5.1.10, we get a short exact sequence

0 A(k)/m H1(k,A[m]) H1(k,A)[m] 0

which fits into a commutative diagram

0 A(k)/m H1(k,A[m]) H1(k,A)[m] 0

0
∏
v∈Σk

A(kv)/m
∏
v∈Σk

H1(kv, A[m])
∏
v∈Σk

H1(kv, A)[m] 0

ρ

ρ̃

with exact rows, vertical arrows induced by the collection of Resv, and diagonal arrow induced by
composition. Define the Shafarevich-Tate group50 of A over k to be

X(k,A) := ker

H1(k,A)→
∏
v∈Σk

H1(kv, A)

 .

The group ker ρ is too unwieldy to work with in practice but the same is not true for the larger
group ker ρ̃. We denote the latter group by Selm(k,A) and call it the m-Selmer group of A over
k. Applying the Snake Lemma to the modified diagram

0 A(k)/m H1(k,A[m]) H1(k,A)[m] 0

0 0
∏
v∈Σk

H1(kv, A)[m]
∏
v∈Σk

H1(kv, A)[m] 0

ρ̃

yields a short exact sequence

0 A(k)/m Selm(k,A) X(k,A)[m] 0

Thus, finiteness of A(k)/m (and of X(k,A)[m]) follows from finiteness of Selm(k,A). The point
here is that Selm(k,A) is readily computable. Letting S ⊆ Σk be as in the proof of the Weak
Mordell-Weil Theorem, Selm(k,A) sits inside of H1

S(k,A[m]) via

Selm(k,A) = {ξ ∈ H1
S(k,A[m]) : ξ maps to 0 in H1(kv, A)[m] for every v ∈ S}.

49The reference for this material is [Poo02].
50Several important open problems in number theory, notably the BSD conjecture, are concerned with the structure

of this group.
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Both H1
S(k,A[m]) and Selm(k,A) can then be computed using the theory of torsors. See [Poo02]

for examples of how this works in practice.

6 Construction of the Pairing

Having completed the first of two major tasks involved in proving the Mordell-Weil Theorem, we
now turn to the second major task, starting with some preliminaries on heights.

6.1 Heights

Given a global field k and n ≥ 1, the standard height function is hk,n : Pnk(k)→ R≥0 defined by

[t0, . . . , tn] 7→ 1

[K : k]

∑
w∈ΣK

max
0≤i≤n

log ‖ti‖w ,

where K/k is a finite extension such that k(t0, . . . , tn) ⊆ K.51

Proposition 6.1.1. Let k be a global field and n ≥ 1. Then, hk,n is well-defined – i.e., it is

(1) non-negative and invariant under scaling by K×;

(2) not dependent on the choice of finite extension K/k.

Proof. (1) Scaling by λ ∈ K× changes the value of the height by

1

[K : k]

∑
w∈ΣK

log ‖λ‖w ,

which vanishes since the Product Formula says
∏
w∈ΣK

‖λ‖w = 1. The standard height is
non-negative because we can always scale t0, . . . , tn so that at least one of them has value 1.

(2) Suppose we have finite extensions k(t0, . . . , tn) ⊆ K ⊆ K ′. Given w ∈ ΣK , w
′ ∈ ΣK′ with

w′ | w,

‖ti‖w′ = ‖ti‖
[K′

w′ :Kw]
w .

We also have [K ′ : k] = [K ′ : K][K : k] and [K ′ : K] =
∑

w′|w[K ′w′ : Kw]. Hence,

1

[K ′ : k]

∑
w′∈ΣK′

max
i

log ‖ti‖w′ =
1

[K : k]

∑
w∈ΣK

 1

[K ′ : K]

∑
w′|w

max
i

log ‖ti‖w′


and

1

[K ′ : K]

∑
w′|w

max
i

log ‖ti‖w′ =
1

[K ′ : K]

∑
w′|w

max
i

log ‖ti‖
[K′

w′ :Kw]
w

= max
i

log ‖ti‖w ·
1

[K ′ : K]

∑
w′|w

[K ′w′ : Kw]

= max
i

log ‖ti‖w .

51An alternative way of going about this is to think of hk,n as a function from An+1
k \ 0 to R which satisfies certain

invariance properties.
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The result follows.

One might hope that hk,n does not depend on a choice of homogeneous coordinates and so is
PGLn+1(k)-invariant on Pnk(k).52 This is false on the nose but turns out to be true modulo bounded
functions. Since we will be working a lot modulo bounded functions, it makes sense to write h ∼ h′
if h− h′ is bounded for h, h′ any functions from the same set into R.

Lemma 6.1.2. Let k be a global field, n ≥ 1, and S ∈ PGLn+1(k). Then, hk,n ∼ hk,n ◦ S.

Proof. We may assume without loss of generality that S is an elementary transformation since,
given any T ∈ PGLn+1(k),

hk,n ◦ S ∼ hk,n ∼ hk,n ◦ T =⇒ hk,n ◦ ST ∼ hk,n ∼ hk,n ◦ TS.

Given [x0, . . . , xn] = x ∈ Pnk(k), there are three possibilities for S:

(1) S swaps the ith and jth entries of x;

(2) S scales xi by λ ∈ k×;

(3) S adds xi to xj .

Let Sx = [x′0, . . . , x
′
n] and note that

(hk,n − hk,n ◦ S)(x) = (hk,n ◦ S−1 − hk,n)(Sx). (3)

Case (1) is clear since then hk,n = hk,n ◦ S as the sums involved in the height computations are
invariant under permutation. For case (2), given 0 ≤ j ≤ n and w ∈ ΣK , we have

log
∥∥x′j∥∥w =

{
log ‖xj‖w , j 6= i,

log ‖λ‖w + log ‖xi‖w , j = i

and so log
∥∥∥x′j∥∥∥

w
≤ log ‖xj‖w + | log ‖λ‖w |. Hence,

(hk,n ◦ S − hk,n)(x) =
1

[K : k]

∑
w∈ΣK

(max
j

log
∥∥x′j∥∥w −max

j
log ‖xj‖w) ≤ 1

[K : k]

∑
w∈ΣK

| log ‖λ‖w |.

S−1 multiplies xi by λ−1 and so is of the same form as S. Equation (3) and the above computation
then give that hk,n ∼ hk,n ◦ S. For case (3), note first of all that, given a, b ∈ K and w ∈ ΣK ,

log ‖a+ b‖w ≤ max{log ‖a‖w , log ‖b‖w}+ cw

with

cw :=

{
0, w is non-archimedean,

log 2, w is archimedean.

Hence, given 0 ≤ t ≤ n and w ∈ ΣK ,

log
∥∥x′t∥∥w ≤ max{log ‖xi‖w , log ‖xj‖w , log ‖xt‖w}+ cw

52PGL here means projective general linear group.
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and so

(hk,n ◦ S − hk,n)(x) ≤ 1

[K : k]

∑
w∈ΣK

cw.

S−1 is given by precomposing S with a transformation of type (2) that multiplies xi by −1 and so
hk,n ∼ hk,n ◦ S by Equation (3) and the above computation.

Lemma 6.1.3. Let X be a projective k-scheme, L a very ample line bundle on X with associated
closed embedding iL : X ↪→ PΓ(X,L ) = Pdk, and f : X → Pnk a k-morphism for some n > 0 such
that f∗O(1) ∼= L . Define hf := hk,n ◦ f and hiL := hk,d ◦ iL , viewed as functions from X(k) to
R. Then, hf ∼ hiL .

Technically, iL depends on a choice of d+1 sections that globally generate L . Lemma 6.1.2 shows
that this choice does not matter. Moreover, Lemma 6.1.3 shows that even the choice of embedding
projective space relative to L does not matter.

Proof. By Lemma 6.1.2, we may without loss of generality change coordinates on Pnk so that f(X) is
non-degenerate and hence f∗ : Γ(Pnk ,O(1))→ Γ(X,L ) is injective. We claim first that hf ≤ hiL .
Let T0, . . . , Tn be a k-basis for Γ(Pnk ,O(1)). Then, letting Zj := f∗Tj for 0 ≤ j ≤ n, we have
f = [Z0, . . . , Zn]. The map f∗ : Γ(Pnk ,O(1))→ Γ(X,L ) is injective by assumption and so we may
complete Z0, . . . , Zn to a k-basis Z0, . . . , Zd for Γ(X,L ). Changing coordinates on Pdk if necessary,
this gives iL = [Z0, . . . , Zd] and so hf ≤ hiL since we are taking a maximum over a larger list of
numbers.

Next, we claim that hiL ≤ hf + O(1). By assumption, X is covered by the open preimages
D+(Zj) = f−1(D+(Tj)) and so the zero locus {Z0 = · · · = Zn = 0} on X is empty. Since L is
very ample, iL is closed and so its image is of the form ProjS for

S := k[Z0, . . . , Zd]/I ⊆
⊕
r≥0

Γ(X,L ⊗r).

The ideal J := (Z0, . . . , Zn) ⊆ S satisfies

ProjS/J = ProjS ∩ {Z0 = · · · = Zn = 0} = ∅

as a subset of Pdk and so the Nullstellensatz implies that the irrelevant ideal (Z0, . . . , Zd) hence
(Zn+1, . . . , Zd) has nilpotent image in S/J . It follows that Zen+1, . . . , Z

e
d ∈ J for some e ≥ 1 and so

each such Zj satisfies

Zej =
n∑
i=0

FijZi mod I

with Fij ∈ k[Z0, . . . , Zd] homogeneous of degree e− 1. Given x ∈ X(k), it follows that

ehiL (x) ≤ (e− 1)hiL (x) + hf (x) + C (4)

for some constant C independent of x. Where does this come from? By assumption, each Fij can
be written as

Fij =
∑
I

aijI Z
I ,
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where I = (t0, . . . , td) with t0 + · · ·+ td = e− 1, aijI ∈ k is some coefficient, and ZI := Zt00 · · ·Z
td
d .

Let N be the number of such tuples I. Given x ∈ X(k), let K/k be a finite extension containing
Z0(x), . . . , Zd(x). Adopting the notation in the proof of Lemma 6.1.2, we have

log ‖b0 + · · ·+ bM‖w ≤ max
0≤i≤M

‖bi‖w + (M − 1)cw

given b0, . . . , bM ∈ K and w ∈ ΣK . Careful application of this formula gives the result of Equation
(4), with C given by

C :=
1

[K : k]

∑
w∈ΣK

(n+N − 2)cw +
∑
i,j

max
I

log
∥∥∥aijI ∥∥∥

w

 .
The argument given in the proof of Proposition 6.1.1 shows that C is independent of x.

Theorem 6.1.4 (Weil’s Thesis). There exists a unique assignment of pairs (X,L ) with X a
projective k-scheme and L a line bundle on X to functions hk,L = hL from X(k) to R modulo
bounded functions satisfying

(1) hL⊗L ′ = hL + hL ′;

(2) (Pnk ,O(1)) 7→ hk,n;

(3) hf∗L = hL ◦ f for f : X ′ → X a morphism of projective k-schemes.

Moreover, if L is very ample then hL = hiL .

We call any function from X(k) to R representing hL a Weil height associated to L .

Proof. Given X a projective k-scheme and L a very ample line bundle on X, define hL := hiL .
This immediately verifies (2). Given L ,L ′ very ample line bundles on X, define iL⊗L ′ to be the
composition

X X ×k X Pnk ×k Pmk P(n+1)(m+1)−1
k

∆X/k (iL ,iL ′ )

where the unlabeled arrow is the Segre embedding defined by

([s0, . . . , sn], [t0, . . . , tm]) 7→ [s0t0, . . . , sntm].

[Zha11] implies iL⊗L ′ is a closed embedding and so L ⊗L ′ is very ample. The fact that logarithms
take products to sums implies that hL⊗L ′ = hL +hL ′ . Now, let L be any line bundle on X. Since
X is projective, it has an ample line bundle M . Then, there exists some n > 0 such that M⊗n

and L ⊗M⊗n are both very ample.53 This suggests the following extension procedure. Given L
a line bundle on X, choose M a very ample line bundle on X such that L ⊗M is also very ample
and define hL := hL⊗M − hM . This procedure is well-defined since, given two such line bundles
M ,M ′,

hL⊗M + hM ′ = hL⊗M⊗M ′ = hL⊗M ′ + hM .

This immediately verifies (1). Property (3) requires a bit more care. Factor f : X ′ → X via the
commutative diagram

53To see this, note that, since M is ample, M⊗n1 is very ample and L ⊗M⊗n2 is globally generated for some
n1, n2 > 0. Then, M⊗(n1+n2) is very ample and L ⊗M⊗(n1+n2) is very ample by [Zha11].
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X ′ X

X ′ ×k X

f

Γf
pr2

where Γf is the graph morphism associated to f . To verify (3), it suffices to verify (3) with f
replaced by Γf and pr2. Γf is obtained as the base change via f of the diagonal ∆X/k : X → X×kX
and so is a closed embedding (hence finite) since X is projective. Given any very ample line bundle
M on X ′ ×k X, Γ∗fM is ample and so (Γ∗fM )⊗N ∼= Γ∗f (M⊗N ) is very ample for some N > 0.54

Hence, replacing M with M⊗N , we may assume by (1) without loss of generality that M , f∗M
are both very ample. (3) then follows from Lemma 6.1.3 applied to iL ◦ f and if∗L . To verify (3)
for pr2, it suffices to consider the case X ′ = Pnk , X = Pmk , and L = OPm

k
(1) = O(1). This follows

from applying (1) and the work we just did to the commutative diagram

X ′ ×k X X

Pnk ×k Pmk Pmk

pr2

(iL ,iL ′ ) iL

pr2

with L ′ any very ample line bundle on X ′. We have

pr∗2O(1) ∼= O(0, 1) ∼= O(2, 2)⊗O(2, 1)−1,

where O(a, b) is the image of (O(a),O(b)) under Pic(Pnk) × Pic(Pmk ) ↪→ Pic(Pnk ×k Pmk ). The line
bundles O(2, 2) and O(2, 1) are both very ample.55 Direct computation then shows

hO(2,2) − hO(2,1) = hO(1) ◦ pr2 .

To see that h is unique, let h′ be another assignment of pairs satisfying properties (1)-(3). By (2),
h and h′ agree on projective spaces and so by (3) they agree on very ample line bundles. But then
h and h′ agree on all line bundles by (1).

6.2 Pairings

Given an abelian group A and h : A→ R, h is almost quadratic if the induced function

(x, y, z) 7→ h(x+ y + z)− (h(x+ y) + h(x+ z) + h(y + z)) + (h(x) + h(y) + h(z))

from A3 to R is bounded.56 This notion extends to equivalence classes of functions from A to R
modulo bounded functions.

Lemma 6.2.1. Let A/k be an abelian variety and L a line bundle on A. Then, hL : A(k) → R
is almost quadratic.

54Note that the pullback of a very ample line bundle under a scheme morphism (even a finite morphism) is not in
general very ample. For an example, take an elliptic curve E with distinguished k-rational point p and consider the
line bundle OE(2p) with induced morphism E → P1

k.
55In general, O(a, b) is globally generated if and only if a, b ≥ 0 and both ample and very ample if and only if

a, b > 0.
56Check for yourself that any quadratic function vanishes under this process.
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Proof. By Corollary 3.2.3,

M := (pr1 + pr2 + pr3)∗L⊗(pr1 + pr2)∗L −1⊗(pr1 + pr3)∗L −1⊗(pr2 + pr3)∗L −1⊗pr∗1 L⊗pr∗2 L⊗pr∗3 L

is a trivial line bundle on A3 and so hM is bounded.57 Given (x, y, z) ∈ A3(k) = A(k)3,

hM (x, y, z) = hL (x+ y + z)− (hL (x+ y) + hL (x+ z) + hL (y + z)) + (hL (x) + hL (y) + hL (z))

by (1) and (3) of Weil’s Thesis.

Since hL is almost quadratic, is it possible to “perturb” hL so that it is quadratic? The answer,
which rests on the following algebraic result, is yes.

Theorem 6.2.2 (Tate). Let A be an abelian group and h : A→ R almost quadratic. Then, there
exist unique symmetric Z-bilinear b : A×A→ R and Z-linear ` : A→ R such that

h ∼ 1

2
(b ◦∆) + `,

where ∆ : A→ A×A is the diagonal map.58

Lemma 6.2.1 and Tate’s Theorem together tell us that, given an abelian variety A and L a
line bundle on A, there exist unique symmetric Z-bilinear bL : A(k) × A(k) → R and Z-linear
`L : A(k)→ R such that

ĥL :=
1

2
(bL ◦∆) + `L : A(k)→ R

is a Weil height associated to L . The function ĥL is called the Tate canonical height associated
to L .

Theorem 6.2.3. Let A/k be an abelian variety. Let L ,L ′ be line bundles on A and f : B → A
a morphism of abelian varieties.

(1) ĥL⊗L ′ = ĥL + ĥL ′.

(2) ĥf∗L = ĥL ◦ f .

(3) Suppose L is symmetric. Then, `L = 0.

(4) Suppose L is ample and symmetric. Then, bL is positive semi-definite.

(5) Suppose L is ample and symmetric. Then, the set

{x ∈ A(k) : [k(x) : k] ≤ d, ĥL (x) ≤ C}

is finite for every C > 0 and d ≥ 0.

Proof. (1) Part (1) of Weil’s Thesis gives ĥL⊗L ′ ∼ ĥL + ĥL ′ . Since both sides are quadratic
of the desired form, the uniqueness part of Theorem 6.2.2 gives that bL⊗L ′ = bL + bL ′ and
`L⊗L ′ = `L + bL ′ .

57Both A and A3 are projective and so L and M have well-defined Weil heights by Weil’s Thesis.
58See [Con15, Thm 10.3.6], which proves a statement for more general multilinear maps.
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(2) Part (3) of Weil’s Thesis gives ĥf∗L ∼ ĥL ◦ f . We have

ĥL ◦ f =
1

2
(bL ◦∆A) ◦ f + `L ◦ f =

1

2
((bL ◦ (f × f)) ◦∆B) + `L ◦ f,

with bL ◦ (f × f) symmetric Z-bilinear and `L ◦ f Z-linear since f induces a group homo-
morphism B(k) → A(k). Hence, the uniqueness part of Theorem 6.2.2 gives that bf∗L =
bL ◦ (f × f) and `f∗L = `L ◦ f .

(3) Since L is symmetric, L ∼= [−1]∗L and so ĥL = ĥL ◦ [−1]. Hence, given x ∈ A(k),

bL (x, x) + `(x) = bL (−x,−x) + `L (−x) = bL (x, x)− `L (x) =⇒ `L (x) = 0.

(4) Since L is ample, M := L ⊗n is very ample for some n� 0 and so M ∼= i∗MO(1). By parts

(2) and (3) of Weil’s Thesis, ĥM ∼ hiM . Since ĥM = nĥL by (1),

nĥL = hiM + ε

for ε : A(k)→ R bounded. Since the function hiM is non-negative, ĥL is therefore bounded
below. A quick inductive argument using (3) shows

ĥL ◦ [m] =
m(m+ 1)

2
· ĥL

for every m ≥ 1. It follows that torsion points of A(k) have vanishing height (Is the converse
true?) and non-torsion points have multiples whose heights increase in absolute value without
bound.59 Hence, ĥL cannot take on negative values and so bL is positive semi-definite.

(5) This follows from Northcott’s Theorem, which is [Con15, Thm 10.1.6].

6.3 Proof of the Mordell-Weil Theorem

Now that we have all of the ingredients needed to prove the Mordell-Weil Theorem, we state the
final result tying everything together.

Theorem 6.3.1. Let A be an abelian group, m ∈ Z≥2 such that A/mA = A/m is finite, and
〈·, ·〉 : A×A→ R a symmetric positive semi-definite Z-bilinear form such that {a ∈ A : 〈a, a〉 < C}
is finite for every C > 0. Then, A is finitely generated.

Using that A is projective, we choose L an ample line bundle on A. By Theorem 6.2.3, the pairing

〈·, ·〉A/k : A(k)×A(k)→ R

obtained by restricting ĥL is Z-bilinear, symmetric, positive semi-definite, and satisfies that

{x ∈ A(k) : [k(x) : k] ≤ d, 〈x, x〉 ≤ C}

is finite for every C > 0 and d ≥ 0. Combining this with Theorems 6.3.1 and 5.2.1 proves the
Mordell-Weil Theorem!

59Note that it is wrong to assume that A(k) has a non-torsion point on the grounds that it is an infinite abelian
group since, e.g., Q/Z is infinite and torsion.
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Remark 6.3.2. The attentive reader might wonder what A∨ has to do with all of this. For a
general abelian variety, there is no “canonical” choice of ample line bundle. However, for A×k A∨
there is such a canonical choice, namely the Poincaré bundle PA. The associated Tate canonical
height yields a map A(k) × A∨(k) → R called the Néron-Tate pairing. This pairing is of great
historical and computational importance.

To conclude, we present a proof of Theorem 6.3.1.

Proof. Analogous to the situation for inner products, we define ‖a‖ := 〈a, a〉1/2 given a ∈ A. Since
〈·, ·〉 is symmetric, Z-bilinear, and semi-definite, the Cauchy-Schwarz inequality | 〈x, y〉 | ≤ ‖x‖ ‖y‖
holds.

Let {a1, . . . , an} be a complete system of representatives for A/m. Define

C := 2 max
1≤j≤n

‖aj‖

and let A0 := {a ∈ A : ‖a‖ < 2C}, which is finite by assumption. We claim that A0 generates A.
The key ingredient is the following. Given a ∈ A \A0 and 1 ≤ j ≤ n, we have

‖a− aj‖2 = 〈a− aj , a− aj〉 = 〈a, a〉 − 2 〈a, aj〉+ 〈aj , aj〉

and so

‖a− aj‖2 ≤ ‖a‖2 + 2 |〈a, aj〉|+ ‖aj‖2

≤ ‖a‖2 + 2 ‖a‖ ‖aj‖+ ‖aj‖2 by Cauchy-Schwarz

= ‖a‖2 + ‖aj‖ (2 ‖a‖+ ‖aj‖)

≤ ‖a‖2 +
1

2
‖a‖

(
2 ‖a‖+

1

2
‖a‖
)

=
9

4
‖a‖2 ,

where we have used that

‖a‖ ≥ 2C ≥ 2 ‖aj‖ =⇒ ‖aj‖ ≤
1

2
‖a‖ .

Hence,

a ∈ A \A0, 1 ≤ j ≤ n =⇒ ‖a− aj‖ ≤
3

2
‖a‖ . (5)

This sets us up for a proof by induction. To see this, let a be as above. By assumption, given
α ∈ A, there exists 1 ≤ j ≤ n such that α − aj ∈ mA. Using this, we obtain b1, b2, . . . ∈ A and
i1, i2, . . . ∈ {1, . . . , n} such that

mb1 = a− ai1
mb2 = a− ai1 − ai2
mb3 = a− ai1 − ai2 − ai3

...

Induction and Equation (5) together give that, for every v ≥ 1, either ‖bv‖ < 2C/m or

‖bv‖ ≤
(

3

2m

)v
‖a‖ .
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Since m ≥ 2, we have (3/2)m < 1 and so choosing v large enough yields(
3

2m

)v
‖a‖ < 2C

m
.

Hence, a = mbv + ai1 + · · ·+ aiv lies in the Z-linear span of A0.
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